Landsat 8 Status and Landsat/Sentinel-2 Synergy

Jeff Masek, NASA Landsat Project Scientist, NASA GSFC
James Irons, NASA GSFC
Tom Loveland, John Dwyer, USGS EROS
Curtis Woodcock, Boston University
David Roy, South Dakota State University
Michael Wulder, Canadian Forest Service

presented at the
Sentinel-2 for Science Workshop, ESRIN
May 20, 2014
1. Landsat-8 Status and Performance

2. Sustainable Land Imaging

3. NASA & USGS Preparation for Sentinel-2
Landsat-8 launched Feb. 11, 2013 from Vandenberg Air Force Base (VAFB), California – ATLAS V 401 launch vehicle

Partnership between NASA (space segment) and USGS (ground system, operations)

On-orbit commissioning completed May 30, 2013
- USGS assumed lead responsibility for mission operations
- Satellite renamed Landsat 8
Landsat-8 Instrumentation

Operational Land Imager (OLI, Ball Aerospace)
- Push-broom VNIR/SWIR sensor
- 8 spectral bands @ 30m + pan band @ 15m
- new bands for cirrus (1.38 μm) and coastal (0.44 μm)
- 4 mirror anastigmatic telescope
- Solar diffusers (2); Lamps and shutter for calibration
- Improved SNR & Dynamic Range compared to ETM+

Thermal Infrared Sensor (TIRS, GSFC)
- 2 channel (10.8 and 12 μm) thermal imager
- Quantum Well Infrared Photodiodes (QWIP)
- <120 m Ground Sample Distance (100 m nominal)

Spacecraft built by Orbital Sciences Corp.

5-year Mission Life (2018); 10-years of consumables
LDCM First Light Image (Ft Collins, CO, March 18, 2013)

TIRS 12.0 μm brightness temperature, Saudi Arabia Irrigated Crops
Landsat-8 Status

- Landsat-8 continues to perform well
 - OLI performance meets or exceeds all radiometric & geometric performance requirements
 - TIRS meeting almost all requirements
 - TIRS Band 11 stray light issue
 - Users discouraged from using Band 11 for now

- Landsat-8 currently acquiring ~550 scenes/day (out of possible ~850 land scenes/day)
Landsat 8 Data Acquisitions

- Landsat 8 acquires over 500 scenes per day
 - exceeds requirements of 400 scenes/day
 - By Feb 2014, USGS EROS distributed 1,332,969 Landsat 8 scenes
 - Scenes are typically available within 5 hours of data collection compared to a 24 hour latency requirement

Landsat 8 data are free
New Cirrus Detection Band

OLI natural color (4,3,2) Cirrus band (9)

Better cloud detection and data filtering possible
OLI Signal to Noise Ratio

OLI Signal-to-Noise Performance at Ltypical

- Coastal/Aerosol
- Blue
- Green
- Red
- NIR
- SWIR 1
- SWIR 2
- PAN
- CIRRUS

Legend:
- ETM+ SNR Performance (Ltyp)
- OLI SNR Requirement (median at Ltyp)
- OLI SNR Performance (12-bit median at Ltyp)
- OLI On-Orbit SNR median (Ltyp)
LDCM OLI Natural Color (4,3,2)

From Pat Scaramuzza, EROS
Offshore Application: Environmental Impacts

Environmental Impacts Assessment
legal obligation for offshore wind farm construction

LANDSA T-8 and S-2high spatial resolution => new Environmental Impacts visible

OLI Absolute Calibration

OLI radiance calibration well within 5% specification

5% requirement
Users advised to not use TIRS band 11 for quantitative applications for the present time.
L8 Geometric Summary

- Landsat 8 on-orbit geometric performance is excellent and meets all requirements
- The Cal/Val team continues to monitor on-orbit performance, adjusting the calibration when necessary

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Measured Value</th>
<th>Required Value</th>
<th>Units</th>
<th>Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLI Swath</td>
<td>190.2</td>
<td>>185</td>
<td>kilometers</td>
<td>2.8%</td>
</tr>
<tr>
<td>OLI MS Ground Sample Distance</td>
<td>29.934</td>
<td><30</td>
<td>meters</td>
<td>0.2%</td>
</tr>
<tr>
<td>OLI Pan Ground Sample Distance</td>
<td>14.932</td>
<td><15</td>
<td>meters</td>
<td>0.5%</td>
</tr>
<tr>
<td>OLI Band Registration Accuracy (all bands)</td>
<td>3.98</td>
<td><4.5</td>
<td>meters (LE90)</td>
<td>11.6%</td>
</tr>
<tr>
<td>OLI Band Registration Accuracy (no cirrus)</td>
<td>3.33</td>
<td><4.5</td>
<td>meters (LE90)</td>
<td>26.1%</td>
</tr>
<tr>
<td>Absolute Geodetic Accuracy</td>
<td>36.9</td>
<td><65</td>
<td>meters (CE90)</td>
<td>43.2%</td>
</tr>
<tr>
<td>Relative Geodetic Accuracy</td>
<td>19.9</td>
<td><25</td>
<td>meters (CE90)</td>
<td>20.4%</td>
</tr>
<tr>
<td>Geometric (L1T) Accuracy</td>
<td>11.4</td>
<td><12</td>
<td>meters (CE90)</td>
<td>5.0%</td>
</tr>
<tr>
<td>OLI Edge Slope</td>
<td>0.03054</td>
<td>>0.027</td>
<td>1/meters</td>
<td>13.1%</td>
</tr>
<tr>
<td>TIRS Swath</td>
<td>186.2</td>
<td>>185</td>
<td>kilometers</td>
<td>0.6%</td>
</tr>
<tr>
<td>TIRS Ground Sample Distance</td>
<td>103.424</td>
<td><120</td>
<td>meters</td>
<td>13.8%</td>
</tr>
<tr>
<td>TIRS Band Registration Accuracy</td>
<td>10.5</td>
<td><18</td>
<td>meters (LE90)</td>
<td>41.7%</td>
</tr>
<tr>
<td>TIRS-to-OLI Registration Accuracy</td>
<td>22.1</td>
<td><30</td>
<td>meters (LE90)</td>
<td>26.2%</td>
</tr>
</tbody>
</table>
After Lansdat-8… where to next?
Landsat Program History

- **Landsat 1**: 1972–1978
- **Landsat 2**: 1975–1982
- **Landsat 3**: 1978–1983
- **Landsat 4**: 1982–1993
- **Landsat 5**: 1984–
- **Landsat 6**:
- **Landsat 7**: 1999–

Timeline:
- 1970
- 1975
- 1980
- 1985
- 1990
- 1995
- 2000
- 2005
- 2010
- 2015

- **Gov’t Operations**
- **Commercial Operations**
- **Gov’t Operations**
Sustainable Land Imaging

- President’s FY14 budget called for a NASA/USGS **Sustainable Land Imaging (SLI)** program to secure Landsat continuity for 2018-2038
 - NASA responsible for system design, implementation, and launch
 - USGS responsible for ground system and operations

- Initial study phase by Architecture Study Team (AST)
 - Recommend one or more 20-year architectures for US Land Imaging
 - Develop representative mission configurations, apply cost models
 - Assess configurations based on availability, performance, risk
 - Report due to Office of the President (OSTP) Aug 2014

The President’s FY 2014 Budget Submittal for NASA’s Sustainable Land Imaging activities

<table>
<thead>
<tr>
<th>$K</th>
<th>FY 14</th>
<th>FY 15</th>
<th>FY 16</th>
<th>FY 17</th>
<th>FY 18</th>
<th>FY 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Imaging</td>
<td>30,000</td>
<td>84,000</td>
<td>94,800</td>
<td>117,900</td>
<td>117,900</td>
<td>-</td>
</tr>
</tbody>
</table>

Per ESD direction assume for planning purposes: $120M in FY19 as the base year and inflation adjust in FY20 and beyond
3. NASA and USGS Preparations for Sentinel-2
Merging Sentinel-2 and Landsat data streams could provide 2-3 day coverage globally – transformational for land science

- vegetation phenology at patch scale
- ecological change & land management

The large number of blue colored bands (>41 accesses) indicate that the revisit interval over the majority of the region is on the order of 2 days.

Number of times Landsat-8 and the Sentinel 2 satellites accessed areas on the ground over an 80 day period of time.

- 21 accesses indicates a maximum revisit interval of ~3 days 19 hours
- 46 accesses indicates a minimum revisit interval of ~1 day 18 hours

Courtesy Brian Killough, LARC
US Preparations for Sentinel-2

1. OLI/MSI Cross-calibration and Sensor Characterization
 - Pre-launch comparison of integrating spheres w/ ESA
 - Characterization of MSI diffuser in SWIR (U Az/ESA)
 - Post-launch planning for joint calibration activities (e.g. vicarious campaigns)

2. US Access to Sentinel-2 Data

3. Higher-level Data Products
USGS Plans for Data Archive

- Sentinel-2 MSI L1c data will be made available via FTP through USGS GLOVIS & EarthExplorer sites
 - **USGS is in discussions with ESA on obtaining a copy of the L1c archive**
 - No specific latency requirements; data to be pulled as available from PACs
 - **USGS will track distribution and report metrics to ESA and Copernicus**
 - L1c reprocessed data will be replaced – no concurrent versions

- Level-2 products developed by NASA will be distributed via USGS

- Total data archive of 6.4 TB per day (assumes 2 satellites, L1c and reflectance products)
NASA Activities: Higher Level Products

- **Object 1**: Harmonized surface reflectance product from S2 and Landsat
 - Calibration/radiometric normalization
 - Atmospheric correction
 - BRDF (solar, view angle) and band pass adjustments
 - Cloud/shadow screening & cirrus masking
 - Common gridding, compositing approach

- **Object 2**: Higher-Level Land Cover and Biophysical products from merged moderate-resolution record
 - Planning and prioritization of products (eg. GTOS ECV’s)
 - QA & Validation components
 - Implementation using ARC NEX processing system (bring algorithms to the data)

NASA solicitation for Land Imaging Science team in 2015, with focus on Landsat/Sentinel integration
SPOT-4 “Take 5”

- NASA participated in Take 5 Experiment with CESBIO
- Focus on atmospheric correction and BRDF adjustment (Vermote/Claverie)
Conclusions

- Landsat-8 has achieved considerable mission success during its first year
 - Excellent data quality
 - Nearing “always on” data acquisition
 - Extends 42-year Landsat legacy

- NASA and USGS collaborating on a plan for a 20+ year program to ensure Landsat continuity

- The potential synergies between Landsat and Sentinel-2 are enormous
 - Near-daily, 10-30m resolution data on vegetation condition, phenology, and land use… a transformational advance
 - Harmonized 42+ year view of how Earth’s land areas are changing through natural and human activities
Web Sites

http://landsat.usgs.gov

http://landsat.gsfc.nasa.gov

http://www.nasa.gov/landsat

FaceBook Page
http://www.facebook.com/NASA.Landsat

Twitter Site
http://twitter.com/#!/NASA_Landsat