Mapping estuarine turbidity using high and medium resolution time series imagery
GEO-Transfert

- **Mission:** to ensure that scientific and technological developments will be further developed and exploited into new products, processes, applications, materials or services ...
- **Remote sensing applications for decision making** - new developments towards operational products
- **Introduction of satellite data in coastal surveillance services**
Main issues in very turbid estuarine environments

- **Scientific issues**
 - Understanding MTZ dynamics (2D / 3D): high SPMs, low O2.
 - Hydro-sedimentary processes understanding and modeling

- **Conservation issues**
 - Natural heritage protection
 - Water quality (WFD)

- **Industrial and socio-economic issues**
 - Fisheries & aquaculture
 - Navigation & harbour activity

- **Management issues**
 - Waste water discharge
 - Nuclear power station cooling
MTZ monitoring

User needs
- Qualitative information (turbidity gradients)
- Quantitative measurement (SPM concentration, particle size determination)
- Operational measurement implementation
 - High frequency
 - Spatial coverage at the scale of the watershed
- Forecasting tools

Scientific questions
- Which sensor & which product to derive SPM?
- Product combination / fusion?
- Retrieval accuracy?

FOCUS: Gironde estuary, Garonne and Dordogne watersheds
Existing image products

Gironde: the widest estuary in western Europe

MTZ characteristics in the Gironde:
- several tens of km long;
- magnitude of movement: about 100 km

120 km

160 km

- Downstream section (2 to 12 km width): medium resolution imagery, MODIS HR wavebands
 - Level 1A
 - Level 2 SR (surface reflectance) - http://reverb.echo.nasa.gov/reverb

 Sentinel 3

- Upstream section (<100 m to 2 km): high resolution imagery
 - Landsat imagery
 - SPOT4 (Take5 experiment)
 - Rrs Products (TOSCA Landsat, Theia Pole - http://www.ptsc.fr/)

 Sentinel 2
RS product choice - Method

Space data sensitive to turbidity variability

- Data download (MODIS, SP, LANDSAT, Marel records)
- Image data processing
 - Level 1A → Rrs (Wang et al., 2009)
 - Reflectance to MES

MODIS:
SPM=12,996*exp((Rrs_859 ou SR_859/Rrs_645 ou SR_645)/0,189)
(Doxaran et al., 2009)

HR: New algorithms
R_{rs} = (L_{w}-ρ*L_{sky})/E_{d}
MES=f(G; R; NIR/G; NIR/R)

- Field data processing
 - NTU to MES
- Matchup constitutions and data comparison
MR product choice: L1A vs L2

SPM maps
- L1A - Rrs
 - Red
 - NIR
- L2 - SR
 - Red
 - NIR

Reflectance sensitivity to turbidity changes
Marel: measurements averaged over 30’
27 images over 1 year - 9 pixels in a box
- L1A – Rrs
HR product available

- L4, 5, 7 & SPOT4: a total of 12 matchup with the Marel station of Bordeaux

<table>
<thead>
<tr>
<th>jj/mm/yyyy</th>
<th>hh:mm</th>
<th>Débit</th>
<th>Coeff. Lamena</th>
<th>Marée</th>
<th>Site</th>
<th>Portets/Garonne</th>
<th>Libourne</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/01/2011</td>
<td>10:37</td>
<td>301</td>
<td>207</td>
<td>64</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>11/02/2011</td>
<td>10:37</td>
<td>342</td>
<td>149</td>
<td>43</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>07/03/2011</td>
<td>10:41</td>
<td>420</td>
<td>147</td>
<td>103</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23/03/2011</td>
<td>10:41</td>
<td>620</td>
<td>116</td>
<td>72</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06/04/2011</td>
<td>10:41</td>
<td>447</td>
<td>88</td>
<td>76</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>02/05/2011</td>
<td>10:37</td>
<td>341</td>
<td>80.8</td>
<td>101</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>18/05/2011</td>
<td>10:37</td>
<td>223</td>
<td>68</td>
<td>88</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>05/07/2011</td>
<td>10:37</td>
<td>171</td>
<td>71.4</td>
<td>108</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>30/08/2011</td>
<td>10:41</td>
<td>322</td>
<td>39.8</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>23/09/2011</td>
<td>10:36</td>
<td>109</td>
<td>38.2</td>
<td>39</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/10/2011</td>
<td>10:41</td>
<td>111</td>
<td>50.8</td>
<td>38</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18/11/2011</td>
<td>10:41</td>
<td>102</td>
<td>64</td>
<td>49</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/02/2013</td>
<td>10:18</td>
<td>314</td>
<td>67.6</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27/03/2013</td>
<td>10:15</td>
<td>1040</td>
<td>492</td>
<td>30</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>21/04/2013</td>
<td>10:13</td>
<td>942</td>
<td>373</td>
<td>96</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>06/06/2013</td>
<td>10:12</td>
<td>838</td>
<td>298</td>
<td>48</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>05/06/2013</td>
<td>10:09</td>
<td>795</td>
<td>207</td>
<td>61</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1290</td>
<td>465</td>
<td>6</td>
<td>x</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>
HR product choice

- Waveband sensitivity to turbidity range

- Algorithms inversion for SPM assessment in Bordeaux
Space SPM accuracy

MR

Validation method approach robustness?

HR

- High resolution gives better estimates
- Adequate atmospheric corrections

Increase matchups nb
- Landsat 8
- S2
Sentinel-2 simulation

\[y = 23,225e^{4.2766x} \]

\[R^2 = 0.875 \]
Processing chain & available data for MTZ monitoring

- At minimum: monthly HR imagery
- Daily MODIS: 33% exploitable images
- 40% of exploitable images in summertime vs 27% in winter

RIVERCOLOR

- Download MODIS images for the specified MODIS tile
- Apply the preliminary created land mask
- Cloud and shadow detection and masking
- NIR and red reflectance ratio inversion into SPM
SPM time series production

Flood

Low water
Ongoing actions

- Field campaigns (AOPs, IOPs vs SPM, POC, chlorophyll, particle size)
- New OC products
- S2 SPM algorithm definition
- MAGEST station representativity
- MODIS / S3 validation
- MODIS SPM map analysis
 - Statistics
 - SiAM validation
- Model / space data complementarity analysis
Perspectives

- Particle size determination from space
- OC products in the estuarine plume
- Assimilation
- SWOT
- Fine clouds / shadow detection improvement over water surfaces (ex. morphology treatment)

- S2 algo validation
- S2 / S3 data fusion: operational SPM quantification from rivers to plumes
 - Watershed scale
- HIGHROC (K. Ruddick)
 - High frequency SPM quantification

- HYMOSED: application of RIVERCOLOR
 - Seine estuary
Thank you for your attention

v.lafon@epoc.u-bordeaux1.fr