Development and assessment of leaf area index algorithms for the Sentinel-2 multispectral imager

Richard Fernandes¹, Marie Weiss², Fernando Camacho³, Beatrice Berthelot⁴, Fred Baret², Riccardo Duca⁵
1: CCRS, Government of Canada; 2: INRA, France; 3: EOLAB, Spain; 4: Magelllium, France; 5: ESTEC, European Space Agency
Objectives

- Description of Validation Sentinel 2 (VALSE2) experiment - focus on LAI algorithm validation.

- Description of two LAI algorithms applicable to S2 MSI
 - INRA Neural Network inversion of PROSAILH
 - CCRS Red-Edge analytical solution
Sentinel 2 Mission Requirements

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Name</th>
<th>Description</th>
<th>Goal Accuracy</th>
<th>Product Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>POA</td>
<td>Bottom-of-Atmosphere Reflectance</td>
<td>Atmoospherically-corrected product including cloud screening, and adjacency/slope effects correction.</td>
<td>5%</td>
<td>2A</td>
</tr>
<tr>
<td>GLC</td>
<td>Generic Land Cover</td>
<td>Land cover with a set of basic generic classes compatible with those already used for generic services such as GLC 2000 and CORINE.</td>
<td>TBD</td>
<td>2B</td>
</tr>
<tr>
<td>FAPAR</td>
<td>Fraction of Absorbed Photosynthetically Active Radiation</td>
<td>Fraction of the radiation in the photosynthetic domain (400-700nm) that is absorbed by leaves. Values range between 0 and 1. Product to provide continuity of MGVI [RD-34]. For Sentinel-2 this index would provide MGVI at high resolution.</td>
<td>RMS=0.05 S/N=21 [RD-34]</td>
<td>2B</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf Area Index</td>
<td>Map with the green leaf area per unit soil area.</td>
<td>10%</td>
<td>2B</td>
</tr>
<tr>
<td>FVC</td>
<td>Fraction of Vegetation Cover</td>
<td>% of the land surface covered by vegetation.</td>
<td>TBD</td>
<td>2B</td>
</tr>
<tr>
<td>Cab</td>
<td>Leaf Chlorophyll Content</td>
<td>The amount of chlorophyll per square centimetre. This product would provide continuity of MTCI [RD-31]. For Sentinel-2 this index would provide MTCI at high resolution. This index is directly related to the chlorophyll content of vegetation.</td>
<td>TBD</td>
<td>2B</td>
</tr>
<tr>
<td>CW</td>
<td>Leaf Water Content</td>
<td>The amount of water in weight (grams) or volume (cubic centimetres) per unit leaf</td>
<td>TBD</td>
<td>2B</td>
</tr>
</tbody>
</table>
Table 16. Evaluation of LAI methods. Blue = semi=empirical; Green = Machine Learning; Pink = Analytical; Brown = ANN; Yellow= Convex Optimization; Grey=LUT Inversion). Accuracy statistics in italics for effective LAI.

L=low, P=Partial, F=Full satisfaction or Mission requirements.

Fernandes et al., VALSE2 Algorithm Survey, CCRS, 2014.
INRA NNET Algorithm

Baret et al., VALSE2 CFI Algorithm Theoretical Basis Document, INRA, 2014.
Continuous radiative transfer equation:

\[\frac{dI(x, \Omega_0)}{dx} + \sigma(\Omega_0)I(x, \Omega_0) = \int_0^{4\pi} \sigma_S(\Omega, \Omega_0)I(x, \Omega) \, d\Omega \]

Eigenfunction decomposition:

\[LI(x, \Omega) = SI(x, \Omega) \]
\[\gamma Le(x, \Omega) = Se(x, \Omega) \]

The probability a photon recollides in the canopy at the infinite scattering order.

\[\gamma_{max} = p \]
Why do we care about p?

- p is invariant to angular or spectral variation of $I(x, \Omega)$
- p is analytically related to LAI (Stenberg, 2006)

\[a_1(\Phi) \frac{1 - e^{-\Phi LAI}}{1 - p} + a_0(\Phi) \]
Relating \(p \) to S2 MSI reflectance

\[p = \frac{1}{\omega} \left[1 - \left(\frac{\partial \ln \omega}{\partial \lambda} \right) \left/ \left(\frac{\partial \ln R_{bs}}{\partial \lambda} \right) \right. \right] \]

\(p \) is a function of

1. black soil reflectance \(R_{bs} \) and
2. leaf albedo \(\omega \)

Red-edge NDVI for S2 closely related to \(N = \frac{\partial \ln R_{bs}}{\partial \lambda} \).

Fernandes et al., VALSE2 CCRS Red-Edge ATBD, CCRS, 2014.
CRS LAI Algorithm

Inputs
- Optical data (
- CHL,
- reflectance

LAI Estimation

1. For each \(\omega, \Phi \) and soil reflectance
2. Estimate \(p \) and LAI
3. Is \(p \) valid?
4. Add LAI(\(p, \Phi \)) to solution

Model leaf albedo, from CHL using PROSPECT5

Estimate CHL from red-edge CHL index

Estimate soil reflectance from regions with lowest 5% NDVI

Inputs
- \(B4, B5, B6 \)
- Surface reflectance
- \(B4, B5, B6 \)
- PROSPECT parameters, \(\Phi \), soil refl.
Radiative Transfer Verification

Fernandes, R., and Gitelson, A.

INRA NNET

CCRS Red-Edge

RMSE = 0.86485 0.85948

LAI Actual

LAI Estimated

1:1 line

CHL μg/cm²
10
20
30
40
50
60
70
80
Producer Validation

INRA NNET
(maize)

CCRS Red-Edge
(maize, soybean)

Estimated LAI vs Actual LAI

N=300, MAE=0.45

Fernandes, R., and Gitelson, A.
Validation of Sentinel 2: VALSE2
ALSE2 Imagery

	CAIS	AHS	HYMAP	ROSIS	AHS	AHS	HYPER	AHS	CASI																		
Orthometry	No L2	Yes	No	No	No	Yes	yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes										
Co-registration	No	No	No	No	No			No	No	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes										
Temporal	Yes	No	No	No	No			No	No	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes										
Radiometry	Cloud	yes	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Spectral (*)	3	3	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ESU	yes	yes	Yes	yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes										

No L2 available

ESU: Yes (Barrax), No San Rossore

Priority in the processing: San Rossore, Barrax
ALSE2 Ground Reference Data

<table>
<thead>
<tr>
<th>LAI</th>
<th>WC</th>
<th>CHL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHP</td>
<td>LICOR</td>
<td>AccuPAR</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Several methodologies, often poor documentation
Need for guidelines!!

Mostly crops were sampled
Need for other experiments!

![Graph showing data distribution and comparison]

Only few data available for some variables.
CHL significantly overestimated (>>60ug/cm²)

Saturation in retrieval due to saturation of input bands
ALSE2 LAI Validation V2

ANNET

SEN3EXP AHS

$y = 0.56 + 0.41x$

Mean(y) = 1.30

N flights = 8

N = 50 $R^2=0.55$ RMSE = 1.40 $B=-0.46$ $S=1.32$

SEN3EXP CASI

$y = 0.56 + 0.41x$

Mean(y) = 1.30

N = 45 $R^2=-0.53$ RMSE = 1.76 $B=-0.58$ $S=1.61$

et al., VALSE2 Validation Report, EOLAB, 2014.
Conclusions

Better co-ordination and careful processing of reference datasets so radiometry and in-situ measurements meet product specifications

Need to perform forest validation (BOREAS, Harz)

Sentinel Level 2P implementing NNET and CCRS algorithms but users must have patience: MODIS LAI had ~1 version/2 years.
2 MSI and S3 OLCI Red-Edge
How did we estimate leaf CHL?
Why does CCRS Red-Edge sometimes underestimate LAI?