MONITORING AIR POLLUTION AT GLOBAL SCALE USING IASI THERMAL INFRARED INSTRUMENT

S. Bauduin1, L. Clarisse1, C. Clerbaux1,2, D. Hurtmans1 and P-F. Coheur1

1 Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles, Brussels, Belgium
2 Sorbonne Universités, UPMC Univ. Paris 06 ; Université Versailles St-Quentin ; CNRS/INSU, LATMOS-IPSL, Paris, France
Introduction

Monitoring air quality using TIR observations

Difficulty: Sensitivity limited by the thermal contrast

\[TC = T_{skin} - T_{air} \]

Typical vertical sensitivity function for a TIR nadir sounder (Averaging kernels AK)

- Maximum sensitivity of TIR sounders in the mid troposphere
Introduction

Monitoring air quality using TIR observations

How deep can we see?

Three general cases:

1. $T_{\text{skin}}^{\text{eff}} = T_1 \rightarrow$ we’re blind
2. $T_{\text{skin}}^{\text{eff}} > T_1 \rightarrow$ absorption from the first layer (usual case during day time)
3. $T_{\text{skin}}^{\text{eff}} < T_1 \rightarrow$ emission from the first layer (temperature inversion)
Introduction

Monitoring air quality using TIR observations

How deep can we see?

\[L^\uparrow = \left[B_\nu \left(1, T_{\text{skin}}^{\text{eff}}\right) - B_\nu \left(T_{\text{air}}\right) \right] t + B_\nu \left(T_{\text{air}}\right) \]

Three general cases:

1. \(T_{\text{skin}}^{\text{eff}} = T_1 \rightarrow \) we’re blind
2. \(T_{\text{skin}}^{\text{eff}} > T_1 \rightarrow \) absorption from the first layer (usual case during day time)
3. \(T_{\text{skin}}^{\text{eff}} < T_1 \rightarrow \) emission from the first layer (temperature inversion)

The larger the thermal contrast, the better the sensitivity of TIR sounders to ABL
Recent studies have demonstrated the capabilities of TIR sounders to monitor near-surface pollution from local to global scales in favorable conditions.
Introduction

Recent studies have demonstrated the capabilities of TIR sounders to monitor near-surface pollution from local to global scales in favorable conditions.

Use of IASI observations

- **NH₃**
- **SO₂**
- **CO**

- Spectral range: 645-2760 cm⁻¹
- Spectral resolution after apodization: 0.5 cm⁻¹
- Radiometric noise: ~0.1K – 0.2K

- Conversion of radiance indexes into columns using LUT
- NRT OE using LUT for spectroscopy (FORLI)

- 12 km pixel x 4 @ nadir
- 120 spectra along the swath (±48.3° Scan → 2400 km), each 50 km along the trace
- Small ground pixel size

Global coverage twice daily (morning and evening orbits)
NH₃ global product

Developed at the ULB by M. Van Damme¹

- **Method** based on Walker et al. (2011, AMT)
- **Idea**: computation of radiance indexes (HRI), which represent the strength of NH₃ spectral signal, and conversion into NH₃ total column using LUT
- **Results**: 7 years of NH₃ measurements, global distributions, temporal evolution in the NH and SH, validation², comparison with models³,…

¹Van Damme et al. (2014, ACP)
²Van Damme et al. (2015, AMT)
³Van Damme et al. (2014, JGR)
1. In Norilsk\(^1\)

- Retrieval of very low altitude SO\(_2\) plumes
- High sensitivity in winter (high negative TC, low H\(_2\)O)

\(^1\)Bauduin et al. (JGR, 2014)
SO$_2$ near-surface local studies

1. In Norilsk1
 - Retrieval of very low altitude SO$_2$ plumes
 - High sensitivity in winter (high negative TC, low H$_2$O)

2. In the North China Plain2
 - Simultaneous retrievals of 4 different pollutants (CO, SO$_2$, NH$_3$, (NH$_4$)$_2$SO$_4$)
 - Buildup of pollutants + large temperature inversions

1Bauduin et al. (JGR, 2014)
2Boynard et al. (GRL, 2014)
SO$_2$ near-surface local studies

BUT
- Two studies limited to local sources
- Limited to negative thermal contrast

→ Positive thermal contrast can also be exploited

→ Development of global product allowing the retrieval of near-surface SO$_2$ columns from IASI observations
SO$_2$ near-surface global product

- Method based on the one developed by Walker et al. (AMT, 2011)
- **Idea**: calculation of a radiance index (HRI), which represents the strength of the SO$_2$ signal in IASI measurements, and conversion of this index into SO$_2$ concentrations
- **Problem**: one index per spectrum \rightarrow integrated over the whole atmosphere \rightarrow no vertical information!
- **Solution**: determination of the altitude of the plume
SO$_2$ near-surface global product

- Method based on the one developed by Walker et al. (AMT, 2011)
- **Idea:** calculation of a radiance index (HRI), which represents the strength of the SO$_2$ signal in IASI measurements, and conversion of this index into SO$_2$ concentrations
- **Problem:** one index per spectrum \rightarrow integrated over the whole atmosphere \rightarrow no vertical information!
- **Solution:** determination of the altitude of the plume

Procedure in 2 steps:

1. Determination of the altitude of the plumes
 - Method developed by Clarisse et al. (2014, ACP) for the eruption of Nabro
 - Based on the computation of radiance indexes

\rightarrow Selection of plumes below 4 km of height
SO\textsubscript{2} near-surface global product

- Method based on the one developed by Walker et al. (AMT, 2011)
- **Idea:** calculation of a radiance index (HRI), which represents the strength of the SO\textsubscript{2} signal in IASI measurements, and conversion of this index into SO\textsubscript{2} concentrations
- **Problem:** one index per spectrum → integrated over the whole atmosphere → no vertical information!
- **Solution:** determination of the altitude of the plume

Procedure in 2 steps:

1) Determination of the altitude of the plumes
 - Method developed by Clarisse et al. (2014, ACP) for the eruption of Nabro
 - Based on the computation of radiance indexes
 - Selection of plumes below 4 km of height

2) Retrieval of near-surface SO\textsubscript{2} column
 - Calculation of HRI and conversion into SO\textsubscript{2} columns using LUT
 - Thermal contrast, H\textsubscript{2}O total column and the zenithal angle are taken into account
 - One LUT per bin of 5° of zenithal angle
SO$_2$ near-surface global product

Example of LUT for the bin 0-5° of zenithal angle, total column of H$_2$O=2×10^{20} molec/cm2.
SO$_2$ near-surface global product

Example of LUT for the bin 0-5° of zenithal angle, total column of H$_2$O=2×10^{20} molec/cm2
Example of LUT for the bin 0-5° of zenithal angle, total column of \(\text{H}_2\text{O}=2 \times 10^{20} \) molec/cm\(^2\)
SO$_2$ near-surface global product

Example of LUT for the bin 0-5° of zenithal angle, total column of H$_2$O=2×10^{20} molec/cm2
SO₂ near-surface global product

Example of LUT for the bin 0-5° of zenithal angle, total column of H₂O = 2 × 10²⁰ molec/cm²

- If $SO₂ = f(TC, H₂O, HRI)$, the associated error is estimated using:

$$
\sigma_{SO₂} = \sqrt{\sigma_{TC}^2 \left(\frac{\partial f}{\partial TC} \right)^2 + \sigma_{H₂O}^2 \left(\frac{\partial f}{\partial H₂O} \right)^2 + \sigma_{HRI}^2 \left(\frac{\partial f}{\partial HRI} \right)^2}
$$

Avec $\sigma_{TC} = \sqrt{2} \times 1K$, $\sigma_{H₂O} = 10\%Col_{H₂O}$, $\sigma_{HRI} = 1$
SO$_2$ near-surface global product

1) Global distributions (2008-2014)

- **2009**
- **2010**
- **2011**
- **2012**
- **2013**
- **2014**
1) Global distributions
2008-2014 AM

Plumes below 4km of height

SO$_2$ near-surface global product
SO$_2$ near-surface global product

1) Global distributions

2008-2014 AM

Plumes below 4km of height

Volcanoes
SO$_2$ near-surface global product

1) Global distributions

2008-2014 AM

Plumes below 4km of height
SO$_2$ near-surface global product

- 7-year time series (Beijing, Sar Cheshmeh) \rightarrow temporal evolution of IASI sensitivity as function of TC and H$_2$O total column

- Comparison with measurements made in Bauduin et al. (2014) above Norilsk \rightarrow the agreement is excellent

- Comparison with OMI observations (use of data from DOAS algorithm developed by N. Theys at BIRA) \rightarrow good agreement given the biases of the instruments and the difference in the overpass times

\rightarrow Retrieval of near-surface sulfur dioxide (SO$_2$) concentrations at a global scale using IASI satellite observations in preparation
Near-surface CO (still on-going)

- This work has begun with the SIROCCO (Synergetic SWIR and IR retrievals of near-surface concentrations of CH$_4$ and CO for Earth and Planetary atmospheres) Project (ESA)*
 → See poster 75

*This work was funded by the SIROCCO Project under ESA contract number 4000107088. The project was conceived and supervised by A.G. Straume-Lindner and O. Witasse
Near-surface CO (still on-going)

- This work has begun with the SIROCCO (*Synergetic SWIR and IR retrievals of near-surface concentrations of CH\textsubscript{4} and CO for Earth and Planetary atmospheres*) Project (ESA)*
 → See poster 75

- **Our contribution on Earth:** investigating the sensitivity of IASI to near-surface CH\textsubscript{4} and CO
 1) Theoretical approach (theoretical characterization using OE diagnostic)
 2) Retrievals of test cases and comparison with in-situ measurements

This work was funded by the SIROCCO Project under ESA contract number 4000107088. The project was conceived and supervised by A.G. Straume-Lindner and O. Witasse
Near-surface CO (still on-going)

- Demonstration of the capability of IASI to measure near-surface CO in case of sufficiently large thermal contrasts
 → theoretically and with real retrievals
- E.g.: retrievals above Windhoek airport and comparison with MOZAIC aircraft measurements
Near-surface CO (still on-going)

- Demonstration of the capability of IASI to measure near-surface CO in case of sufficiently large thermal contrasts
 → theoretically and with real retrievals
- E.g.: retrievals above Windhoek airport and comparison with MOZAIC aircraft measurements

Correlation between seasonal cycle of CO and seasonal cycle of thermal contrasts:
- High CO vmrs from late summer to November when TC are large (≥10K)

During these episodes, IASI is sensitive to the surface and high CO concentrations are caught in the PBL (also found for MOZAIC)
Near-surface CO (still on-going)

- Demonstration of the capability of IASI to measure near-surface CO in case of sufficiently large thermal contrasts → theoretically and with real retrievals
- E.g.: retrievals above Windhoek airport and comparison with MOZAIC aircraft measurements

Correlation between seasonal cycle of CO and seasonal cycle of thermal contrasts:
- High CO vmrs from late summer to November when TC are large (≥10K)
 During these episodes, IASI is sensitive to the surface and high CO concentrations are caught in the PBL (also found for MOZAIC)

Same results for Hyderabad.

In Frankfurt, the agreement between the seasonality observed with MOZAIC and FORLI is worse → thermal contrast!
Conclusions and perspectives

- Demonstration of the capability of IASI to measure near-surface pollutants in case of high thermal contrast
 \[\rightarrow \text{NH}_3, \text{SO}_2 \text{ and CO (still on-going)} \]

- Two products for the retrieval of near-surface concentrations at global scale:
 1) \(\text{NH}_3 \) Calculation of radiance indexes and conversion into columns using LUT
 2) \(\text{SO}_2 \)

- Validation of \(\text{SO}_2 \) retrieval scheme should be done

- Theoretical studies and local retrievals performed for CO in the frame of the SIROCCO project
 \[\rightarrow \text{extension to the globe and generalization using the FORLI algorithm, which allows retrieving CO profiles for the globe in NRT} \]
Thank you!