Evaluation of the effect of strong aerosol loads on satellite retrievals of tropospheric NO$_2$, SO$_2$ and HCHO using MAX-DOAS observations in Wuxi, China

Yang Wang1, Thomas Wagner1, Steffen Berle1, Pinhua Xie2, Ang Li3, Nicolas Theys4, Isabelle De Smedt5

1) Satellite group, Max Planck institute for Chemistry, Mainz, Germany
2) Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
3) Belgian Institute for Space Aeronomy – BIRA-IASB, Brussels, Belgium

ATMOS 2015, ESA University of Crete, Greece
8-12 June 2015
DOI:10.13140/RG.2.1.9950.2881

Extraction of six days with haze pollution and without clouds

<table>
<thead>
<tr>
<th>Day</th>
<th>Scene</th>
<th>Local time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Day1</td>
<td>Jan 26, 2012, 13:30</td>
</tr>
<tr>
<td>2</td>
<td>Day2</td>
<td>Jan 27, 2012, 07:45</td>
</tr>
<tr>
<td>3</td>
<td>Day3</td>
<td>Jan 28, 2012, 14:45</td>
</tr>
<tr>
<td>4</td>
<td>Day4</td>
<td>Jan 29, 2012, 14:45</td>
</tr>
<tr>
<td>5</td>
<td>Day5</td>
<td>Jan 30, 2012, 14:45</td>
</tr>
<tr>
<td>6</td>
<td>Day6</td>
<td>Feb 1, 2012, 14:45</td>
</tr>
</tbody>
</table>

Table 1: geometry of cloud fraction, cloud top pressure, cloud optical thickness and AOD from MODIS and OMI UV aerosol index (at about 13:30) as well as the AOD, single scattering albedo and visibility, values from 12:30 to 14:30 on the seven days. The day 7 is specially used for Fig. 4 because of its small CRF.

Comparison of the boxAMFs, AMFs and VCDs from different procedures for OMI pixels

Aerosol: including MAX-DOAS aerosol profile. **Cloud and Cloudy:** box-AMF for clear and cloudy part of the OMI pixel (no aerosols). **Total:** box-AMF using independent pixel approximation. STD: box-AMF provided DOMINO and BIRA datasets.

AMF

- Aerosol clear and total AMFs are from the corresponding boxAMFs and MAX-DOAS shape factors. Aerosol, clear, total, STD and dataset VCDs are from the corresponding AMFs and satellite SCD. Dataset clear indicate the values from DOMINO and BIRA datasets. MAX-DOAS VCDs are from the MAX-DOAS profiles.

VCD

- Cases with haze pollution and without cloud interference.
- Aerosol and trace gas profiles from MAX-DOAS observational data. Study on the effect of aerosol and trace gases vertical distribution on tropospheric boxAMF, AMF and VCD of satellite observation.

Shape factor effect: The vertical distributions of SO$_2$ and HCHO from MAXDOAS are closer to the surface than those from the chemistry transport model. AMF including the MAX-DOAS shape factors are in general smaller than from the off-line datasets by 25% for SO$_2$ and 35% for HCHO and by -5% to 25% for NO$_2$.

Effect on VCD: Assuming the VCD_aerosol is most correct, the difference between OMI and MAX-DOAS VCD ranges from -40% to 28% for NO$_2$, from -70% to -8% for SO$_2$ and 40% to 200% for HCHO.

Fig. 1: MODIS true color images (about 13:30) and the vertical profiles of aerosol and trace gases retrieved by MAX-DOAS. AOD from AERONET (located at -18 km south-west of the site) level 1.0 and 1.5 and from MAX-DOAS.

Fig. 2: The boxAMFs from different procedures for one OMI pixel and shape factors of the trace gases and aerosol profiles.

Fig. 3: The AMFs and VCDs from different procedures for one OMI pixel.