CH₄ profile retrievals from GOSAT thermal infrared measurements

<u>Arno de Lange¹</u>, Ilse Aben¹, Otto Hasekamp¹, Andre Butz², Jochen Landgraf¹) SRON - Netherlands Institute for Space Research, The Netherlands 2) IMK-ASF, Karlsruhe Institute of Technology (KIT), Germany

ATMOS, 8-12 June 2015, Crete

Partly conducted within the ESA project SIROCCO

Netherlands Institute for Space Research

Netherlands Organisation for Scientific Research (NWO)

Why methane?

Methane sources and sinks

Near-surface CH₄ concentrations

TIR

- CH₄ profile information
- Sensitivity peaks ~8 km

SWIR

Total CH₄ column

SWIR + TIR

Partial columns

GOSAT has both SWIR and TIR channels

GOSAT in a nutshell

Synergistic SWIR + TIR CH₄ retrievals – profiles

CH₄ bias from GOSAT TIR spectra

Day/night differences (not shown)

Bias correction attempts

Spectroscopy

- Integrated X-section
- Line width

Radiometric

- Intensity scaling
- Polynomial offset

Soft calibration

- Pixel mask
- Subtraction average residue

Pixel mask + fitting 1st order polynomial offset

Investigate what spectral structures causes CH₄ bias

- → Need very good estimate of the atmosphere
- → Aircraft campaign: HIPPO

Aircraft campaign: HIPPO

HIPPO: HIAPER Pole-to-Pole Observations

Profiles: 0-15 km

http://hippo.ornl.gov/

Select measurements from one or more data types							
Greenhouse and carbon cycle gases	carbon Ozone and wate		Black carbon and aerosols		CFCs, HCFCs, and HFCs		
Light hydrocarbons and PA	N Sulfur ga marine e	ases and Ati	mospheric	structure data	Nav dat	vigation and airci a	raft
Continuous m	easurem	ents pref	erred	for mos	t ana	alyses	_
APO.X		APO_AO2		CH4_QCLS	5 🔳		
CO.X		C02.X		CUZ_AUZ			
C02_0	OMS 📃	CO2_QCLS		CO_QCLS			
CO_R/	AF 📃	N20_QCLS		02_A02			
Discrete instrument and flask sample measurements							
CH4_CCG	CH4	4_P		CH4_UGC			
CH4e_P	CH4	4e_UGC		CH4isoC13	SIL		
C02_CCG	CO	2isoC13_SIL		CO2isoO18	3_SIL		
CO_CCG	CO.	_P		CO_UGC			
COe_P	CO	e_UGC		H2_CCG			
H2_P	H2	UGC		H2e_P			
H2e_UGC	N20	D_CCG		N2O_P			
N20_UGC	N20	De_P		N2Oe_UG	2		

To download all measurements for all missions please use this link, it is much faster.

Access to Data Dictionary

GOSAT TIR spectrum vs '1st guess'

Spectral residues

Average residue

Average residue and 1st principal component

Impact of fitting 1st principal component

Huge reduction in bias

Remaining bias is smooth

Standard deviation almost identical

Conclusion and outlook

CH₄ TIR retrieval is extremely sensitive to small spectral features
→ Therefore biases are easily introduced

CH₄ from GOSAT TIR

- Positive bias in retrieved CH₄ profile up to 10%
- Global effect, with regional differences
- Land/sea and day/night transitions not smooth

Bias correction

- Straightforward bias correction schemes do not work
- Principal component analysis of spectral residuals is promising:
 - Over TCCON station Wollongong bias is reduced by factor of 10

Next steps

- Other TCCON stations
- Global map → check land/sea and day/night transitions

Thank you

Radiative transfer: SWIR vs. TIR

GOSAT TIR spectrum with Planck curves

