Improving S5P NO$_2$ retrievals

ESA ATMOS 2015
Heraklion June 11, 2015

Andreas Richter, A. Hilboll, and J. P. Burrows

Institute of Environmental Physics and
Institute of Remote Sensing
University of Bremen
Introduction

Current instruments provide excellent coverage and spatial detail for NO$_2$
They will soon be followed by the TROPOMI / S5P instrument which promises even better performance and spatial resolution
S5P tropospheric NO$_2$ retrieval is state of the art – so what’s left to improve?
GOME-2A NO$_2$ above China

- Monthly GOME-2 tropospheric NO$_2$ data are missing most of the large values
- These were removed by cloud filtering as aerosol was so thick that data were classified as partially cloudy
Is it only Aerosols?

- Even without cloud screening, there are data gaps over pollution hot spots on some days
- This is due to quality checking as these fits are poor
Why are the fits poorer at strong pollution?

- There are large and clearly structured residuals in fits over pollution hot spots
- This is not random noise!

- Comparison to NO\textsubscript{2} cross-sections shows that scaling of NO\textsubscript{2} should change over fitting window
Wavelength dependence of Air Mass Factor

- For constant albedo, AMF of NO\textsubscript{2} layer close to the surface increases with wavelength in a Rayleigh atmosphere.
- For a surface layer, this can be a significant effect.
- With radiative transfer modelling and a formal inversion, this should provide information on the altitude of the NO\textsubscript{2}.

About +/- 20%
Empirical Approach for NO$_2$(λ)

- Take standard NO$_2$ x-section
- Scale to increase amplitude with wavelength
- Orthogonalise to leave NO$_2$ columns unchanged

When introduced in the fit, large residuals are fixed
Is this the only problem at large NO$_2$ columns?

- One of the main DOAS assumptions is, that the light path enhancement (AMF) for a trace gas is independent of its column amount.
- For strong absorbers (O$_3$, SO$_2$, IR gases) this approximation is not good enough and the change of sensitivity with wavelength needs to be accounted in the fit ("modified“ DOAS).
- NO$_2$ is generally considered to be a weak absorber, but is that still true for very polluted scenarios?
AMF dependence on NO$_2$ column

- Up to a vertical column of about 1×10^{16} molec cm$^{-2}$, small dependence of AMF on NO$_2$ amount
- For larger columns, the AMF decreases and NO$_2$ absorption structures appear
AMF dependence on NO$_2$ column

- Effect on DOAS fit on synthetic data is larger than on AMF alone as both smaller AMF and spectral structures reduce NO$_2$ columns
- Effect increases with SZA
- Even at a column of 5x1016 molec cm2, the error is > 10%
- Effect decreases with increasing albedo
NO$_2$ saturation on real GOME-2A data

- Many measurements above China are in the saturation range
- Corrections of 5% - 40% need to be applied to individual pixels
- In monthly averages, the effect is still > 10% in January and December
- Real effect is even larger as cloud effects reduce columns but not saturation effects
NO$_2$ saturation on real GOME-2A data

- Many measurements above China are in the saturation range
- Corrections of 5% - 40% need to be applied to individual pixels
- In monthly averages, the effect is still > 10% in January and December
- Real effect is even larger as cloud effects reduce columns but not saturation effects
Results Empirical Approach $\text{NO}_2(\lambda)$: GOME-2A

- The empirical NO_2 AMF proxy is found over the pollution hotspot in China
- It is not found at other locations where the NO_2 slant column is large
- There is some noise in the retrieval of the proxy
Is there more than China? **GOME-2**

GOME-2 NO$_2$ Chisq. Improvement January 2013

- Fit is improved by AMF proxy everywhere over pollution hotspots
Is there more than China? **GOME-2**

GOME-2 NO$_2$ Chisq. Improvement January 2013

- Fit is improved by AMF proxy everywhere over pollution hotspots
Comparison to NO$_2$ columns: **GOME-2**

- Overall pattern similar to NO$_2$ map
- Differences in distributions of maxima
- Artefacts over water
- Noise
On many days in winter, very large NO$_2$ slant columns are observed over Europe and the US.

The NO$_2$ AMF proxy picks up only very few of these signals.
Impact of Clouds: GOME-2

On many days in winter, very large NO$_2$ slant columns are observed over Europe and the US.

The NO$_2$ AMF proxy picks up only very few of these signals.

This is linked to the fact that most of the events are related to cloudy scenes or snow on the surface, resulting in small wavelength dependence.
Sensitivity Study for $\text{NO}_2(\lambda) / \text{NO}_2$

Synthetic data:
- Rayleigh atmosphere
- Constant albedo
- NO_2 layer in different altitudes
- DOAS fit on spectra
- NO_2 temperature dependence corrected by using 2 NO_2 x-sections
- AMF proxy included
- Ratio of AMF proxy / NO_2 to normalise signal

- Ratio of AMF proxy and NO_2 has strong dependence on NO_2 layer height
- Dependence on albedo is small between 3% and 7%
Sensitivity Study NO$_2$(λ) / NO$_2$: SZA

- Effect varies with SZA; larger effect at larger SZA
- At large SZA, AMF proxy also found for high NO$_2$
- Dependence on albedo is small between 3% and 7%
Sensitivity Study $\text{NO}_2(\lambda) / \text{NO}_2$: Bright Surfaces

- Increasing albedo reduces effect as expected for reduced importance of Rayleigh scattering
- For large albedo (> 50%), negative fit factors are found for AMF proxy \Rightarrow wavelength dependence is inverted and only weakly dependent on altitude

\Rightarrow multiple scattering over bright surfaces is stronger at shorter wavelengths
\Rightarrow wavelength dependence of AMF is inverted
\(\text{NO}_2(\lambda) / \text{NO}_2: \) Case Study Highveld: GOME-2

- \(\text{NO}_2 \) plume from Highveld power plants can be tracked onto the ocean
- \(\text{NO}_2 \) SC values increase downwind of the source
- AMF Proxy also has higher values within the plume, but
 - Is more narrow
 - Has largest values at beginning of plume, not at the end of it
Summary

- At large NO$_2$ values (> 5 x 1016 molec cm$^{-2}$), AMF becomes a clear function of NO$_2$ column which needs to be corrected (> 10% effect)
- The effect increases with large SZA and low surface albedo
- A simple correction can be applied using tabulated factors

- At large BL NO$_2$ values, the wavelength dependence of the NO$_2$ AMF becomes relevant in the fit
- A simple empirical correction can be used to account for the AMF change
- At large NO$_2$ columns, the effect can be used to derive some information on NO$_2$ layer height

- All effects of large NO$_2$ values are expected to increase in frequency for instruments having better spatial resolution (S5P, S4)

Funding by DLR Bonn under Contract 50EE1247