

ADM-Aeolus ESA's Wind Lidar Mission and its spin-off aerosol profile products

A. Dehn, A.G. Straume, A. Elfving, F. de Bruin, T. Kanitz, D. Wernham, D. Schuettemeyer, F. Buscaglione, W. Lengert

European Space Agency/ESTEC

ATMOS Conference Crete, 8/06/2015

ADM-Aeolus, ESA Earth Explorer

ADM-Aeolus - ESA's Wind LIDAR Mission | ATMOS 2015 | 08/06/2015 | Slide 2

European Space Agency

Atmospheric Dynamics of the Earth

Aeolus: Mission Objectives

Scientific objectives

- To improve the quality of weather forecasts;
- To advance our understanding of atmospheric dynamics and climate processes;

Explorer objectives

 Demonstrate space-based Doppler Wind LIDARs potential for operational use.

Observation means:

- Provide global measurements of horizontal wind profiles in the troposphere and lower stratosphere
- Spin-off products are atmospheric extinction and backscatter profiles

<u>Payload</u>

ALADIN: Atmospheric LAser Doppler Instrument

Mission Design

Mission Parameters

- Orbit: sun-synchronous
- Mean altitude: ~400 km
- Local time: 18:00 ascending node
- Inclination: 96.97°
- Repeat cycle: 7 days / 109 orbits
- Orbits per day: ~16
- Mission lifetime: 3 years

Aeolus: Measurement Principle (1/2)

- Direct detection UV Doppler wind Lidar operating at 355 nm and 50 Hz PRF in with 2 receiver channels
- Mie receiver to determine winds from aerosol & cloud backscatter
- Rayleigh receiver to determine winds from molecular backscatter
- The line-of-sight (LOS) is pointing 35° from Nadir to capture single component horizontal wind (LOS wind is projected to HLOS)
- The line-of-sight is pointing orthogonal to the ground track velocity vector to remove contribution from the satellite velocity

Aeolus: Measurement Principle (2/2)

Mie channel:

- Aerosol/cloud backscatter
- Imaging technique

Rayleigh channel:

- Molecular backscatter
- Double-edge technique

Aeolus: Instrument Data Processing

Aeolus atmospheric products

1. Primary (L2b) product:

- a. Horizontally projected LOS (HLOS) wind profiles
 - Approximately zonal at dawn/dusk (6 am/pm)
 - ~85 km observation from 3 km subsamples scene classified
 - From surface to ~30 km in 24 vertical layers
 - Random errors: 1-2(PBL), 2(Trop), 3-5 (Strat) m/s
 - Bias requirements: 0.5 m/s

2. Spin-off (L2a) products:

a. Optical properties profiles

Powerful space-borne lidar with separate molecular and particle backscatter detection

Near Real Time delivery of L1b data + L2b processor serves

- * numerical weather prediction (NWP)
- * potential for aerosol assimilation in forecast and climate models

European Space Agency

Aeolus: Mission Impact

Aeolus: Mission Impact for Weather Forecast

Summary conclusions by two impact studies led by ECMWF and KNMI

- Especially beneficial in the tropics and upper troposphere
- ✓ HLOS winds provides approximately 75% of the full wind vector information
- ✓ Impact on forecast quality is of the same order as the currently available radiosonde observation network (WMO benchmark)
- ✓ Impact rather insensitive to random wind error variation
- ✓ Even small wind biases can be detrimental, so try to reduce biases!
 - Wind bias calibration efforts will be essential!

KNMI impact study, Ensemble Data Assimilation experiment

ADM-Aeolus - ESA's Wind LIDAR Mission | ATMOS 2015 | 08/06/2015 | Slide 12

- Ensemble Data Assimilation:
 Forecast spread is a measure of forecast quality (low spread means good forecast)
- The impact of Aeolus observation is on the same order of magnitude as radiosonde data
- Reference: All current global observing observations used for ensemble forecast
- No sondes: Radiosondes removed from the observations
- Aeolus: Different types of Aeolus operation modes. CM 80 mJ now mission baseline.

WMO Workshop Sedona, May 2012 Assessment of current observation types

Courtesy: L.P. Riishojgaard

All observation types have positive **forecast impact** on average.

For the total impact, 1: aircraft, 2: AMSU-A, 3: radiosonde, 4: IASI, 5: GPSRO For impact per 1 obs., 1: radiosonde, 2: GPSRO, 3: aircraft, 4: Scatterometer wind, 5: marine surface observation

Importance of winds for climate applications

- 1. Wind information essential for climate predictions
 - a. Grand Challenges of WCRP underline role of cloud circulation interactions for climate sensitivity

Courtesy: S. Bony, CNRS

- 2. Reanalysis need more wind observations
- 3. Tropical ozone strongly impacted by UTLS dynamics

Contribution to aerosol assimilation

- Assimilation studies have shown the great potential of lidars to improve on current observation of total OD
- 2. Aeolus L2a algorithm developed and being tested
 - a. Co-polar β , σ , lidar ratio, potentially also NRT

- 3. Lack of polarization information in the Aeolus measurements introduce uncertainties in polarizing scenes
 - Methods to handle and/or correct for this is being developed
- 4. Study on the potential of Aeolus for aerosol assimilation being initiated

Aeolus campaigns

1. Objective:

- a. Validation of predicted instrument radiometric and wind measurement performance using the Aladin Airborne Demonstrator (A2D)
- b. Establishing dataset of atmospheric measurements with an Aeolus type Lidar to improve algorithm development

2. 2006 - 2009 A2D Campaigns:

- a. Two ground-based (2006, 2007) and three airborne (2007, 2008 and 2009)
- b. So far, on the order of 100 recommendations for the Aeolus mission (instrument and algorithm development and testing)
- c. First atmospheric measurements worldwide with a Fizeau and Double Fabry-Perot UV lidar system

3. Further pre-launch campaign in May 2015 successful:

- a. extend observations in highly heterogeneous conditions (vert./hor.)
- b. extend dataset on nadir response calibrations
- c. rehearsal and preparation for CAL/VAL activities (DLR, NASA, Summit Station)

Preliminary comparisons of A2D and DLR 2µm wind lidar measurements on-board the Falcon, near Greenland, 2009. Courtesy: U. Marksteiner, DLR

Aeolus CAL/VAL AO delta-call 2014

Aeolus CAL/VAL AO call, 2007:

- 1. Draft Phase E1 (and E) CAL/VAL plan and requirements established
- 2. Call open to experts/scientists worldwide
- 3. 16 (joint) proposals received and reviewed
- 4. 15 proposals were selected but now uncertain/no longer valid due to launch delays

⇒ DELTA AO CAL/VAL CALL NEEDED

Aeolus AO delta-call 2014, objectives:

- 1. Allow for confirmation/update of current proposals
- 2. Attract new proposals

Aeolus delta-call outcome:

- 1. Open from 1 May 15 June '14
- 2. 17 proposals received, 4 were large joint national efforts
- 3. Review was completed in '14
- 4. Cal/Val projects were presented and discussed at the Aeolus Science & Cal/Val workshop Feb. '15
- 5. Outcome -> Aeolus CAL/VAL Implementation Plan

Aeolus CAL/VAL preparations

1. Aeolus Science and CAL/VAL Workshop

10-13 February

- 2015:
 - a. http://www.aeolus-science-calval-2015.org/
 - b. Presentation of mission and scientific / NWP application
 - c. Refinement of CAL/VAL plan and compile implementation plan
 - d. Campaigns planning and coordination amongst AO proposals and external campaigns
- Launch readiness (late 2016)
- 3. Phase E1 CAL/VAL Workshop/meeting (L+5)
- Phase E CAL/VAL monitoring and Workshops (coordinated by Mission Manager)

Conclusions

- ✓ More than 10 years of development <u>challenges</u>
- ✓ Invaluable <u>experience</u> has been gained
- ✓ Laser and LIDAR modifications are very <u>time consuming</u>
- √ The mission remains <u>worldwide</u> <u>unique</u>
- ✓ Enthusiastic user communities anticipating break-through in weather forecast and climate research
- ✓ The Project and the Industrial team committed to complete Aladin by end 2015 and be ready for launch in 2016.

Important link:

➤ Aeolus Living Planet web site: <u>www.esa.int/The_Living_Planet_Programme/ADM-Aeolus</u>

