EVALUATION OF DISCREPANCIES IN THE ANTHROPOGENIC NOX EMISSION TRENDS ACROSS EUROPE
SYNERGISTIC USE OF LOTOS-EUROS AND REMOTE SENSING NO2 TROPOSPHERIC COLUMNS
Lyana Curier, R. Kranenburg, A. Segers, R. van der A., M. Schaap
We evaluate the discrepancies in the anthropogenic NOx emission trends across Europe derived from OMI and GOME-2 datasets and the LOTOS-EUROS chemistry transport model.

Goal:

Contribute to the verification and improvement of the UNECE/EMEP emission inventory over Europe by synergistic use of satellite data and chemistry transport model.
Air quality modelling is the 3-D mathematical prediction of the ambient concentration of pollutant based on available measured inputs.
EVALUATION OF DISCREPANCIES IN THE ANTHROPOGENIC NOX EMISSION TRENDS ACROSS EUROPE

Vlemmix et al, 2015, ACP
EARTH OBSERVATION DATASETS

GOME-2 and OMI

- GOME-2 and OMI instrument have a similar temporal sampling frequency
- GOME-2 and OMI instruments are nadir-viewing spectrometers
- OMI (Aura satellite) in July 2004: spatial resolution of 24×13km
- GOME-2 (METOP-A satellite) in October 2006 spatial resolution of 80×40km
- The local over pass is around 9:30 for GOME-2 and around 13:30 for OMI
- We use the Royal Netherlands Meteorological Institute (KNMI) OMI (DOMINO2 v2.0) and GOME-2 (TM4NO2A v2.3) tropospheric NO2 vertical column density (VCD)
- Data are rejected if cloud frac >0.5 surface albedo >0.3
EARTH OBSERVATION DATASETS

MULTI YEAR AVERAGE OF NO2 VCD ACROSS EUROPE 2007-2013

GOME-2 (TM4NO2A v2.3)

OMI (DOMINO2 v2.0)

NO2 tropospheric column 10^{15} #.cm$^{-2}$
The substantial difference between the two datasets raises an obvious question of consistency in potential science applications to estimate emission strengths. Though trends might be similar.
SIMULATION VS EO DATA
MONTHLY AVERAGE 2007-2013

GOME-2 (TM4NO2A v2.3)

\[y = 1.662x + 2.760 \]
\[r^2 = 0.799 \]

OMI (DOMINO2 v2.0)

\[y = 1.064x - 0.100 \]
\[r^2 = 0.874 \]
Source apportionment module makes use of a labelling approach i.e. the contribution of each source for a set of sources is tracked through the model system.

The emissions are categorized per source sector and time of emission.

LOTOS-EUROS run for 2009 over Europe using TNO MACC emission for 2009
SOURCE APPORTIONMENT: R-RHUR

Origin of NO2 VCD

OMI

Origin of NO2 VCD

GOME-2

Jan-April 2009
EVALUATION OF DISCREPANCIES IN THE ANTHROPOGENIC NOX EMISSION TRENDS ACROSS EUROPE

SOURCE APPORTIONMENT: PO-VALLEY

OMI

Origin of NO2 VCD

GOME-2

Origin of NO2 VCD

Jan-April 2009
We assume that NO2 tropospheric VCD is a summation of various contribution

\[\text{NO}_2\text{instrument} = \text{NO}_2\text{emis} + \text{NO}_2\text{transport} + \cdots + \text{NO}_2\text{meteo} \]

Can be modelled using a RAQ using a fix emission database

LOTOS-EUROS run for 2007-2013 period over Europe using TNO MACC emission for 2005
NO2 tropospheric VCD modelled were constructed using the instrument averaging kernel and output at their respective location and time overpasses.
The data are then meshed into an 0.5x0.25 lon x lat grid and a monthly remnant between instrument and model was computed.
TRENDS IN NO2 COLUMNS: METHODOLOGY

Remnant between Instrument and model

\[Y_t = C + \frac{1}{12} B X_t + A \sin \left(\frac{\pi}{6} + \alpha \right) + N_t \]

[Weatherhead et al 1998]

Significance analysis:

\[|B/\sigma| > 2 \] then trends is significant. (95% confidence)
EVALUATION OF DISCREPANCIES IN THE ANTHROPOGENIC NOX EMISSION TRENDS ACROSS EUROPE

TRENDS IN REMNANT

GOME-2

OMI

relative trends (%/year)

-5 -4 -3 -2 -1 0 1 2 3 4 5

-25 -20 -15 -10 -5 0 5 10 15 20 25

11 May 2015
ZOOM OVER N-SPAIN

EVALUATION OF DISCREPANCIES IN THE ANTHROPOGENIC NOX EMISSION TRENDS ACROSS EUROPE

11 May 2015

GOME2 rem NSpain
-0.3%

OMI rem NSpain
-3.9%

NO2 field 10^15 cm^-2

months starting January 2007
Trends in the concentration at AIRBASE station is under investigation.

Some station present a positive trends. The amplitude remains to be confirmed.
ZOOM OVER EASTERN EUROPE

Spindler et al 2015, TFMM

PM$_{10}$

Winter wind from East

Graph showing particle mass concentration [µg/m3] from 1993 to 2014, with summer or end of winter indicated on the x-axis.

- WE
- SE
- WW
- SW
SUMMARY

• Source Apportionment

 ‣ GOME-2 and OMI should provide with the same information for NOx emission inversion study. The combined information could not be used to discriminate between source sector emission trends. However, they could be used conjointly in an inversion scheme to further constraint your model for inverse NOx emission.

• Trends

 ‣ The detection of a significant trends across Europe is scarce
 ‣ Between 2007 and 2013 the trends derived from GOME-2 and OMI have a similar distribution across Europe.
 ‣ Over North Western Europe: GOME-2 and OMI dataset agree => No significant trends
 ‣ Over Western Europe : OMI trends are in average 10 times higher than the trends derived from GOME-2 data
 ‣ Over Eastern Europe a positive trends up to 30% is observed in the OMI trends dataset.
THANK YOU FOR YOUR ATTENTION

lyana.curier@tno.nl

This study was conducted under the ESA project, GLOBEMISSION

We acknowledge the free use of tropospheric NO2 column data from the OMI & GOME-2 sensors from www.temis.nl.
PRESCRIBED DIURNAL PROFILE

EVALUATION OF DISCREPANCIES IN THE ANTHROPOGENIC NOX EMISSION TRENDS ACROSS EUROPE