Deformation Monitoring of Urban Infrastructure by Tomographic SAR Using Multi-View TerraSAR-X Data Stacks

Sina Montazeri(1), Xiao Xiang Zhu(1,2), Michael Eineder(1,2), Ramon F. Hanssen(3), Richard Bamler(1,2)

(1) German Aerospace Center (DLR)
(2) Technical University of Munich (TUM)
(3) Delft University of Technology (TU Delft)
TomoSAR Urban Imaging

- Multi-baseline InSAR approach
- Layover separation capability
- Up to 10^6 points/km2 achievable with meter-resolution SAR data
- Non-linear and multi-component motion (e.g. linear subsidence and thermal seasonal deformation) can be accounted for → LOS deformation

Source: Zhu, 2011
InSAR LOS Deformation

- InSAR provides deformation estimates projected onto the LOS of the satellite
 (One-dimensional deformation)

\[d_{\text{LOS}} = d_u \cos(\theta_{\text{inc}}) - d_e \cos(\alpha_h) \sin(\theta_{\text{inc}}) + d_n \sin(\alpha_h) \sin(\theta_{\text{inc}}) \]

- \(d_{\text{LOS}} \): LOS deformation
- \(d_u \): Motion component in vertical direction
- \(d_e \): Motion component in east-west direction
- \(d_n \): Motion component in north-south direction
- \(\theta_{\text{inc}} \): Local incidence angle of satellite beam
- \(\alpha_h \): Azimuth angle of the satellite

LOS deformation estimates from, at least, three geometries \(\rightarrow \) Retrieval of \(d_u, d_e, d_n \)
InSAR LOS Deformation

- Considering near-polar orbits of TerraSAR-X, for instance:
 - Heading angle ($\alpha_h = 190.6^\circ$)
 - Incidence angle ($\theta_{inc} = 36.1^\circ$)

\[
\begin{bmatrix}
0.8 & 0.58 & -0.1
\end{bmatrix}
\begin{bmatrix}
u \\
e \\
n
\end{bmatrix}^\top
\]

- Should not lead to ignorance of d_n in the functional model of 3D motion retrieval

\[
\Delta_e = d_n \cdot \tan(\alpha_h) \approx 18 \% d_n
\]
Why motion decomposition?

Tomographic data available from **one** viewing geometry:

- One-dimensional LOS deformation
- No information on the shadowed part

Tomographic data available from **multiple** viewing geometries:

- Decomposed horizontal and vertical motion
- Shadow-free deformation monitoring
- Higher number of scatterers on each building
Workflow

- Required data: Stacks available from cross-heading tracks

- TomoSAR processing of each SAR image stack and geocoding

- Geodetic point cloud fusion

- Motion decomposition from the available LOS measurements
Tomo-GENESIS Processing System

New features:
- SL1MMER for SR
- Time Warp method
- Integrated solution
- Point clouds fusion
Point Cloud Fusion

- TomoSAR point clouds from different acquisition geometries cannot be directly merged:
 - Unknown height of the reference point in each stack

- Available *geometrical* fusion algorithms
 - Least squares identical point matching (Gernhardt et al., 2012)
 - Feature-based building end-point matching (Wang and Zhu, 2014)

How about geodetic point cloud fusion?
Geodetic Point Cloud Fusion

- Based on an **absolutely localized identical reference point** for all the TomoSAR stacks

Corrections: Atmospheric and geodynamic effects

Stereo-SAR: Combination of absolute SAR measurements

Elevation and deformation estimates of all the stacks are w.r.t this point
Motion Decomposition

\[d_{LOS} = d_u \cos(\theta_{inc}) - d_e \cos(\alpha_h) \sin(\theta_{inc}) + d_n \sin(\alpha_h) \sin(\theta_{inc}) \]

- \(m \): Number of points inside the cube
- \(x \): Unknown vector consist of \((d_u, d_e, d_n)\)
- \(b \): Observation vector consist of TomoSAR LOS deformations
- \(A \): Design matrix based on \((\theta_{inc}, \alpha_h)\)
- \(W \): Weight matrix proportional to inversed squared distances
- \(v \): Vector of residuals
- \(w \): Vector consists of diagonal elements of \(W \)

Fused point cloud

Volume of 5m x 5m x 5m

For each point

Overdetermined system

\[\text{Setup } b + v = Ax \]

\[w^T |v| = \sum_{i=1}^{m} w_i |v_i| \rightarrow \min \]

Retrieved motion components

\(m \geq 3? \)

No

Yes

\(m \geq 3? \)
Why L1 Norm Instead of L2?

- L2 norm minimization (Least squares):
 \[\mathbf{v}^T \mathbf{W} \mathbf{v} = \sum_{i=1}^{m} v_i \ W_{i,i} \ v_i^T \rightarrow \min \]

- L1 norm minimization
 \[\mathbf{w}^T |\mathbf{v}| = \sum_{i=1}^{m} w_i \ |v_i| \rightarrow \min \]
 Robust against outliers
Experimental Results
Dataset and Test Area

- Central area of Berlin, Germany
- Four stacks of TerraSAR-X VHR spotlight images (300MHz)
- Period: March 2008 to March 2013

Scene coverage

SAR data

<table>
<thead>
<tr>
<th>Beam</th>
<th>Incidence angle</th>
<th>Heading angle</th>
<th>Track type</th>
<th>Nr. of Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>41.9°</td>
<td>350.3°</td>
<td>Ascending</td>
<td>102</td>
</tr>
<tr>
<td>85</td>
<td>51.1°</td>
<td>352°</td>
<td>Ascending</td>
<td>111</td>
</tr>
<tr>
<td>42</td>
<td>36.1°</td>
<td>190.6°</td>
<td>Descending</td>
<td>109</td>
</tr>
<tr>
<td>99</td>
<td>54.7°</td>
<td>187.2°</td>
<td>Descending</td>
<td>138</td>
</tr>
</tbody>
</table>
TomoSAR Deformation Results
Seasonal deformation map (Descending)

Processed by Tomo-GENESIS, DLR
Linear deformation map (Descending)

Processed by Tomo-GENESIS, DLR
Seasonal deformation map (Ascending)

Processed by Tomo-GENESIS, DLR
Linear deformation map (Ascending)

Processed by Tomo-GENESIS, DLR
Geodetic Point Cloud Fusion
Geodetic Point Cloud Fusion

Selected reference point: Base of a lamp post near central railway station

ITRF 2008:

\[X = 3783630.014 \pm 0.010 \, \text{m} \]
\[Y = 899035.0040 \pm 0.010 \, \text{m} \]
\[Z = 5038487.589 \pm 0.011 \, \text{m} \]

We expect a bias of approximately 20 cm due to the diameter of the lamp post
Geodetic Point Cloud Fusion

\[D \approx 20 \text{ cm} \]

\[\theta_{\text{Asc}} \quad \theta_{\text{Dsc}} \]

\[d_I = D \cdot \tan(\theta_{\text{Asc}}) \cdot \tan(\theta_{\text{Dsc}}) \]

\[dx_{\text{Asc}} = d_I \cdot \cos(\alpha_{\text{Asc}}) \]

\[dy_{\text{Asc}} = -d_I \cdot \sin(\alpha_{\text{Asc}}) \]

\[dx_{\text{Dsc}} = d_I \cdot \cos(\alpha_{\text{Dsc}}) \]

\[dy_{\text{Dsc}} = -d_I \cdot \sin(\alpha_{\text{Dsc}}) \]
Geodetically Fused TomoSAR point cloud of Berlin
Berlin in 3D

- 63 Million scatterers (10km x 5km)
- Accuracy w.r.t LiDAR DSM: approx 20 cm

Processed by Tomo-GENESIS, DLR
Motion Decomposition
Motion Decomposition (Geometry Assessment)

- Assuming a single scatterer is visible in all the four stacks

- A concept similar to Dilution of Precision (DOP) in GPS:
 - \(A \): Design matrix (based on \(\alpha_h, \theta_{inc} \))
 - \(\sigma = 1 \)

\[
G = \sigma^2 \cdot (A^T A)^{-1}
\]

\[
\begin{bmatrix}
43.3 & -0.8 & 277.8 \\
-0.8 & 0.51 & -5.4 \\
277.8 & -5.4 & 1801.7
\end{bmatrix}
\]

- \([6.6 \ 0.7 \ 42.5]\)
- Correlation between components
Seasonal Motion Decomposition (Berlin Central Station)

With L2 norm minimization

With L1 norm minimization

East-West
Linear Motion Decomposition (Berlin Central station)
Seasonal Motion Decomposition (Eisenbahn Bridge)

D 42
A 57
A 85
D 99

Up
East-West

[mm]

-10 -5 0 5 10
Conclusions and Outlook

- Motion decomposition based on multiple-viewing angles:
 - The functional model of deformation should contain the three components in order to prevent biased deformation estimates.
 - In urban area monitoring using X-band data the seasonal deformation should be considered.
 - Seasonal deformation in the order of 12 mm (between summer and winter 24 mm) in the east-west direction were observed in Berlin central station.
- Retrieval of the motion components by L1 norm preserves more information than L2.
- GPS deformation observations can be incorporated to provide absolute deformations.
Thank you for your attention!