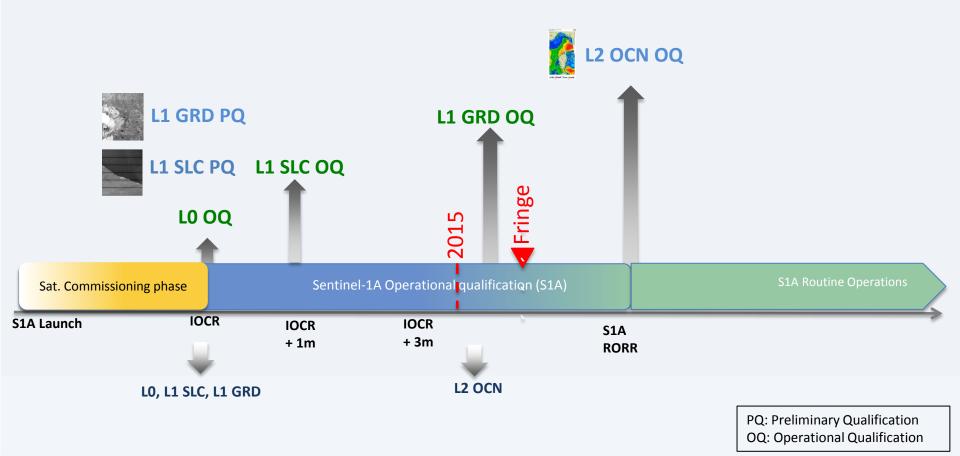


S-1 instrument and product performance status

Fringe Workshop, ESRIN, 2015

- N. Miranda, ESA, EOP-G
- G. Palumbo, Serco SPA
- S-1 Mission Performance Center:
- G. Hajduch, R. Husson, P. Vincent, CLS (FR)
- P. Meadows, A. Pilgrim, BAE Systems (UK)
- D. Giudici, R. Piantanida, Aresys (IT)
- D. Small, A. Schubert, UZH (CH)
- A. Mouche, Ifremer (FR)
- H. Johnsen, Norut (N)
- F. Collard, ODL (FR)

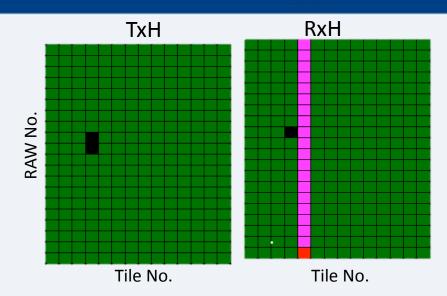


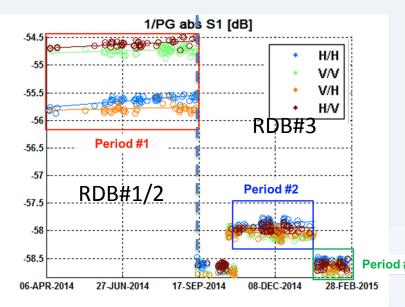
Operational user products qualification



- The Sentinel-1 product qualification is a major objective of the ramp-up phase.
 - The qualification activities have started at launch following a step-wise approach ($L0 \rightarrow L1 \rightarrow L2$)
 - L1 Product qualification will be completed in two steps during the ramp-up phase
 - Early release to users before full quality is achieved

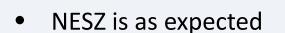
S-1A : Events since IOCR

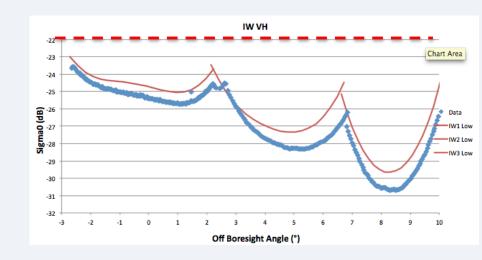


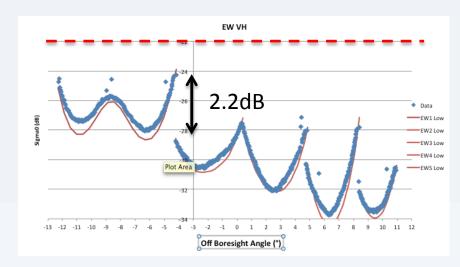

- IPF 236 : Data released to the users, preliminary calibration
- AOCS : Update of the AOCS to correct for roll and pitch offset
- Deramping TN: Release of the TOPS deramping Tech. Note, Sentinel online library [Fringe recom.]
- RxG: Activation of the Rx Gain correction (Range varying gain)
- WV K: WV product calibrated
- Orbit Av : Availability of restituted and precise orbit files https://qc.sentinel1.eo.esa.int/
- L2 : generation of L2 Ocean product for validation
- RAW TDS: Delivery of the RAW decoded TN and associated TDS, Sentinel online library [Fringe recom.]
- IPF 243: IPF processor update improving calibration, fixing GRD slicing issues, 1st L1 format change Next To come:
- RDB4 : Update of the RDB to introduce new quaternion reference frame
- SM Ical : Removal of the calibration pulses in SM to correct for scalloping effect

S-1A antenna status

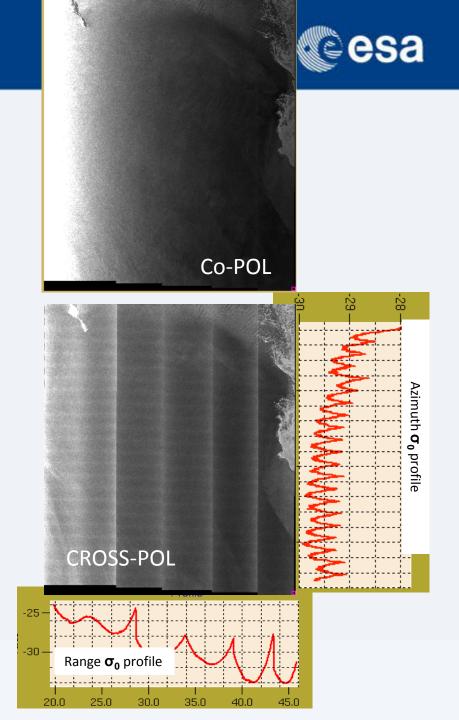
- The antenna is monitored using the internal calibration:
 - RFC: allowing to characterize the drift/failures of each TRMS:
 - 2 TRMs are failed since the CP
 - Intermittent anomaly on "tile 5" not working in RxH and V from:
 - 2014-10-18 → 2015-01-27 with no impact on the data (https://qc.sentinel1.eo.esa.int/disclaimer/)
 - Restarted for few days last week
 - Interleaved cal: allowing to monitor the instrument gain drift
 - Drift of 0.484dB/y measured during the CP under assessment
 - Doesn't impact the data quality as the internal calibration is used in the processing




Instrument sensitivity: Noise Equivalent Sigma Zero

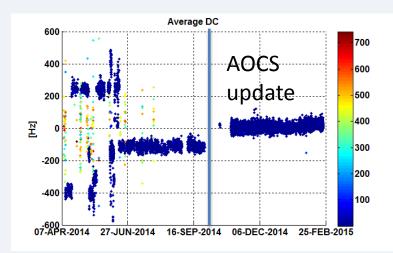

 NESZ is measured over area of low backscatter (e.g. ocean under low wind speed) and compared with theoretical profiles (---)

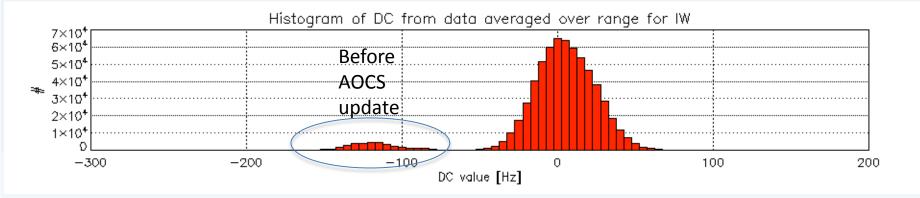
• Mission requirement is -22dB (- - -)



-- NESZ theo. -- Measurement

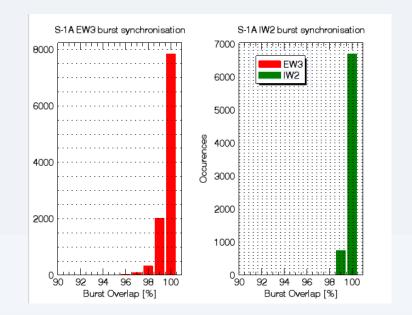
NESZ

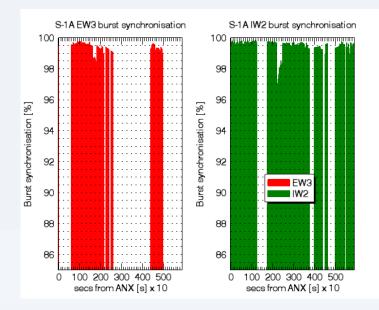

- TOPS products are radiometricaly corrected for:
 - Elevation Antenna Pattern
 - Azimuth Antenna Element Pattern (TOPS descalloping)
- In presence of noise (no signal returned to the radar), these corrections are shaping the <u>noise</u>
 - Data acquired over ocean at low wind speed
 - Cross-polarisation
- It is visually not "nice" but it is an <u>expected feature</u> of the processing



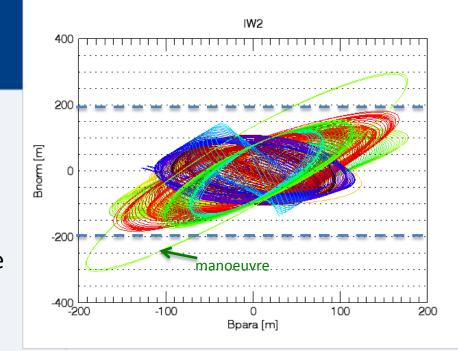
Total Zero Doppler Steering

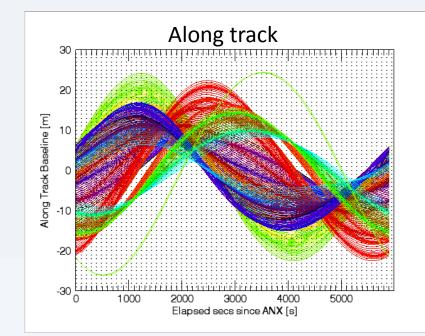
- S-1 is Total Zero Doppler Steered
- The Doppler centroid is monitored since launch as an indicator of steering performance
- Doppler measured from IW products is stable: 6.2±19.494Hz with no noticeable trends


Burst Synchronization (TOPS)


Cesa

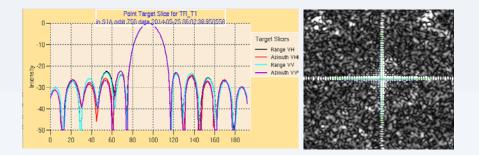
- S-1 is the first mission using TOPS as main operational mode →Burst Synchronisation (BS) is a pre-requisite for TOPS interferometry
- BS is ensured by snapping the acquisition start on predefined grid where each points are separated by the burst cycle (Tc).

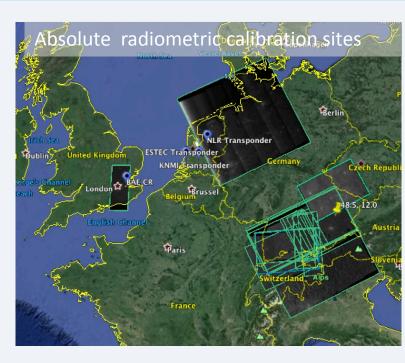

• Bust overlap > 96% with no trend around the orbit



Orbit baseline stability

- The orbit dead-band mission requirement was ±60m
- IOCR recommendation was to increase dead-band to ±120m to reduce the number of manoeuvers/weeks, relaxed to 200m under high solar activity
- Normal baseline is of 3.17±75m
- Along track baseline is within ±20m ensuring good burst synchronization

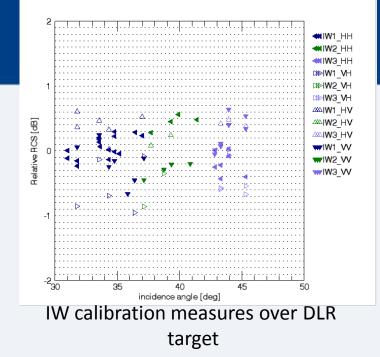




L1 Product Verification results

- Man made devices deployed for the sake of instrument commissioning and product verification : ESA and DLR transponders, UZH, BAE and DLR corner reflectors
- Natural sites like the Amazonian rain-forest
- Product Basic Quality Indicators
- Product radiometric/polarimetric calibration
- Product geolocation accuracy

Product performance verification



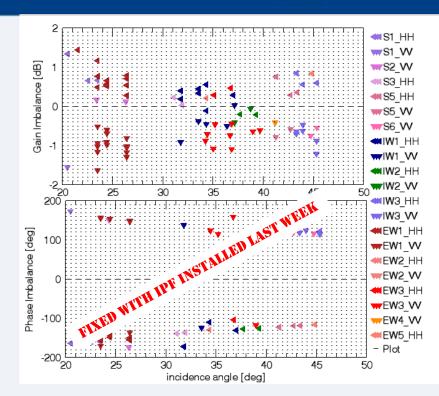
Acq. Mode	Product Type	Resol. Class	Resol. [m]		ENL		PSLR [dB]		ISLR [dB]	
			Req.	Meas.	Req.	Meas.	Req.	Meas.	Req. (1D)	Meas. (2D)
SM	SLC		[1.7 x 4.3] to [3.6 x 4.9]	[1.7 x 4.3] to [3.6 x 4.9]	1	0.94	< - 21.2	-20.18±0.87	<-16.7	- 12.56±0.81 ⁽¹⁾
	GRD	FR	9 x 9	8.7x8.6	[3.5-3.7	3.40		-20.61±0.68		-12.81±1.14 ⁽¹⁾
IW	SLC		[2.7 x 22] to [3.5 x 22]	[2.5 x 21.6] to [3.5 x 21.6]	1	0.94	< -	-19.10±4.56	< -16.7	- 12.46±3.03 ⁽¹⁾
	GRD	HR	20 x 22	19.85x21.43	4.4	4.80	21.2	-19.72±3.34		-12.17±3.07 ⁽¹⁾
EW	SLC		[7.9 x 42] to [14.4 x 44]	[7.9 x 42.9] to [14.6 x 43.8]	1		< - 21.2	-20.54±3.12	< -16.7	- 12.46±3.03⁽¹⁾
	GRD	HR	50 x 50	50.56x50.46	2.7	2.60		-20.22±1.41		-11.73±4.57 ⁽¹⁾

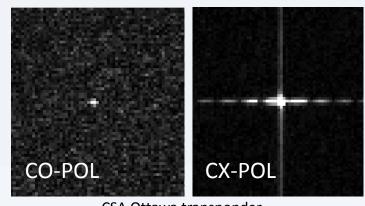
(1) Worse than the requirement due to the measurement approach being more stringent (2D-ISLR) than the requirement (1D-ISLR). Using an adapted approach ISLR is back within specification

S-1 Absolute Radiometric Calibration

- Radiometric accuracy of products processed with the IPF V236, considering all beams and polarisation together
 - For SM : -0.03 ± 0.24 dB
 - For EW: -0.16 ± 0.35 dB
 - For IW: 0.016 ± 0.3 dB
- Most of the measurement were made while all the radiometric correction were not yet applied
 - − Roll correction \rightarrow EAP
 - Gain variation over Rx time
- The radiometric accuracy is for the time being limited by two main issues:
 - Unexpected polarimetric gain imbalance
 - Residual of range radiometric corrections (under assessment)
- Radiometric calibration activity is on-going:
 - Geoscience Australia site
 - DLR site will restart soon

Geoscience Australia site Mean relative RCS IW1 = 0.01 ± 0.23 dB Mean relative RCS IW2 = 0.04 ± 0.32 dB


Polarimetric calibration



- Using the DLR transponders it has been possible to assess the polarimetric calibration:
 - **X** Gain imbalance: RxV > RxH
 - ☑ Phase imbalance:

 \rightarrow fully corrected with the latest IPF 243 installed in 19/03/2015

- DLR <u>CR</u> were used to measure the X-talk (antenna isolation) during the CP. X-talk ~-38dB was measured (requirement is >-30dB)
- Similar measurements are on-going with the CSA RSAT2 transponders
 - Variation between [-29, -38]dB is observed

CSA Ottawa transponder 20150312

Geolocation accuracy

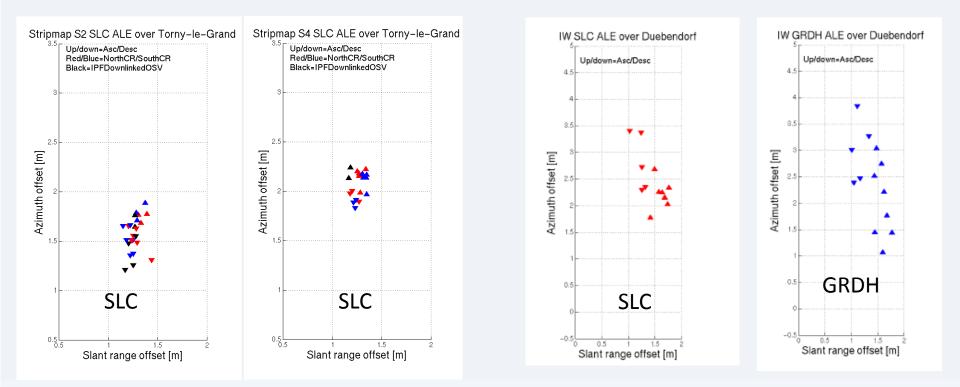
- Precise geolocation has been assessed over dedicated site deployed by UZH over Torny-le-Grand and Dubendorf
- Assessment of the geolocation accuracy was performed using:
 - Different state vector sources
 - atmospheric path delay correction (3m)
 - plate tectonics (~cm)
 - Solid earth tides (~cm)

SM SLC	Slant range offset [m]	Azimuth offset [m]	SM GRDF	Slant range offset [m]	Azimuth offset [m]	Fix under implementation
Internal (SSP)	5 / 5 + 2/ 33	2 10+58 2	Internal (SSP)	5 37+2 50	0 /0+50	
Postitutod	1 20+0 06	2 02+0 58	Postitutod	1 20+0 10	1 05+0 51	User product
neotratea	1.0020.00	2.0020.00	Restructu	1.00-0.110	1.0010.01	
Precise	1.27±0.06	1.96±0.41	Precise	1.27±0.19	1.89±0.40	

Precise geolocation accuracy

S2

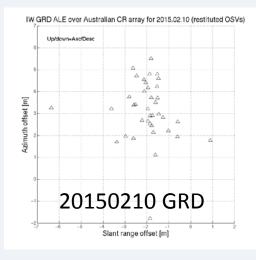
4 asc., 8 desc. Mean \pm standard deviation: $\Delta rg \ 1.27 \pm 0.07 \ m$

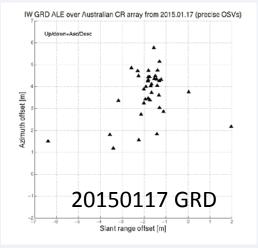

 $\Delta az = 1.57 \pm 0.18 \text{ m}$

S4					
7 asc., 3 desc.					
Mea	n \pm standard deviation:				
∆rg	1.27±0.06 m				
Δaz	2.07±0.13 m				

7 asc., 3 desc.			
Mea	n \pm standard deviation:	N	
∆rg	1.47±0.23 m	Δ	
∆az	2.45±0.49m	Δ	

IW


IW asc., 3 desc. Mean \pm standard deviation: $rg 1.47 \pm 0.25 m$ $az 2.40 \pm 0.8 m$



Product geometric accuracy

- What is the product geometric location accuracy if those correction are not performed?
- Absolute Location Error (ALE) has over Geoscience Australia site has been assessed
 - Range location error increases due to the non atmospheric path delay compensation (~3m) and due to inaccuracies (we believe) in the survey
 - Azimuth location error increased (survey issue)
- ALE is within the pixel!

IW GRD ALE using restituted OSVs Mean \pm standard deviation: $\Delta rg: -2.00 \pm 1.07 \text{ m}$ $\Delta az: 3.15 \pm 1.36 \text{ m}$

Spacing 10x10m

IW GRD ALE using precise OSVs Mean \pm standard deviation: $\Delta rg: -1.83 \pm 1.17 \text{ m}$ $\Delta az: 3.70 \pm 1.09 \text{ m}$

Spacing 10x10m

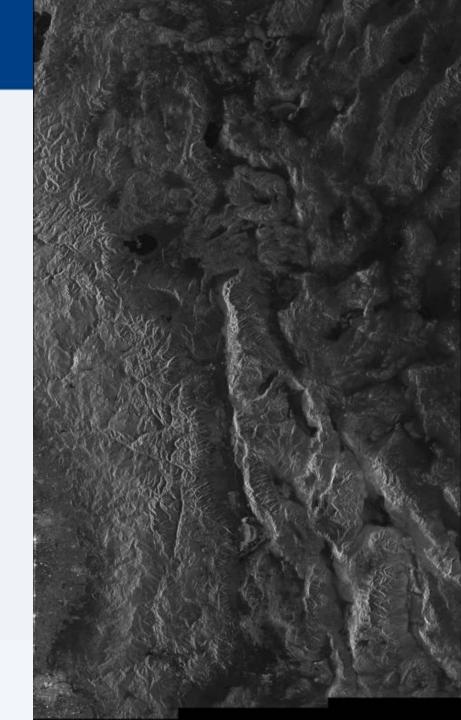
Anthology of sl

20150320 to 22 Greenland EW GRDM

Courtesy MyOcean Courtesy MyO

Courtesy MyOcean

Other known issues



- L1 products are qualified but are not yet perfect!
- There are non-blocking known issues :
 - Jitter in the TOPS SLC burst timing → doesn't prevent interferometric application
 - Jitter in the product orbit annotation creating phase jumps if used → mitigated by the usage of external orbits
 - Geolocation error if no orbit files are used for processing → mitigated by the usage of RESORB orbits during processing
 - Denoise vector not verified yet \rightarrow doesn't prevent any application
- Soon corrected
 - Scalloping in SM → will be fixed by removing the internal calibration pulse sequence from the timeline
 - Geometric Doppler not reliable → will be fixed by changing the frame of the quaternions on-board

Conclusion

- Instrument is performing as expected with no major degradation impacting the product quality since IOCR
- S-1A Level-1 product qualification is completed. S-1A products are suitable for supporting all applications including INSAR
- Instrument and product performance are routinely monitored by a dedicated team of experts (S-1 Mission Performance Center)
- Product improvement loop is on-going:
 - Know issues are being addressed
 - Further improvement in the radiometric calibration will come in short term
- We need your feedback to improve

