Sentinel-1 InSAR Performance: Results from the Sentinel-1A In-Orbit Commissioning

Dirk Geudtner¹, Nestor Yaguee-Martinez², Pau Prats³, Ignacio Navas-Traver¹, Itziar Barat¹, David Small⁴, Adrian Schubert⁴ and Andrea Monti Guarnieri⁵

¹ESA ESTEC
²DLR, Remote Sensing Technology Institute
³DLR, Microwave and Radar Institute
⁴University of Zurich, Remote Sensing Laboratories
⁵Politecnico Di Milano
Sentinel-1 TOPS InSAR Pre-Studies

- Sentinel-1 TOPS InSAR study based on *TerraSAR-X TOPS data* for mapping of stationary and non-stationary scenarios focusing on TOPS image co-registration techniques.

- Experimental implementation of TOPS mode on *RADARSAT-2* to mimic the Sentinel-1 IW mode SAR and InSAR performance and to generate Sentinel-1-like IW SLC products.
Repeat-pass TOPS InSAR using *Interferometric Wide Swath (IW)* data pairs worked on the ‘spot’

S-1A IW interferogram of data pair acquired 7-19 August, 2014 (\(2\pi\) height = 128.82m)

Verification of:

- SAR instrument phase stability
- Satellite on-board timing and GNSS solution to support *position-tagged commanding* (OPS angle)
- Mission Planning system using *TOPS cycle time grid points* for datatake start time estimation
- Accurate orbit control (orbital tube)
Sentinel-1A Instrument Stability
Internal Calibration

• Network of Cal pulses monitors potential drifts in SAR instrument’s (internal) Transmit (Tx) and Receive (Rx) signal path:

• Each DT starts and ends with sequences of 6 types of Cal pulses both at nominal signal BW and at 100MHz BW:

- APDNCal
- TACal
- EPDNCal
- RxCal
- TxCal

Product (complex) of Transmit power and Receive gain

\[PG = \frac{\text{TxCal} \cdot \text{RxCal}}{\text{EPDNCal}} \cdot \frac{\text{TACal}}{\text{APDNCal}} \]

- PG product is applied to Raw SAR data (in operational SAR processor (IPF)) to correct for instrument amplitude and phase variations:
 - Internal electronic instrument delay correction
 - Radiometric correction
Sentinel-1A Instrument Stability during long Datatakes (25min)

Variation over 25 min:

- **Gain:**
 - 0.31 dB (VV)
 - 0.37 dB (VH)

- **Phase:**
 - -13.6° (VV)
 - -14.3° (VH)

- **Variations in amplitude < 0.6 dB**
- **Discrete jumps in phase and internal delay occur when the SES is restarted**
Sentinel-1A Orbital Tube

• Reference orbit was reached on August 7th, 2014
• Satellite is kept within an Orbital Tube around a Reference Mission Orbit (RMO)
• Specified Orbital Tube radius of 50 (rms) ⇒ equivalent to Ground-track dead band of 60m
• During S-1A Commissioning: Relaxation of Ground-track dead band to 120m ⇒ Orbital Tube radius of better than 100 (rms)

RMS of Orbital Tube w.r.t. Reference Orbit expressed in baseline coordinates
Sentinel-1A Orbital InSAR Baseline

Average (daily) absolute Baseline for consecutive repeat passes

- $B_{\text{perpendicular}}$
- B_{parallel}
- $B_{\text{along\:track}}$

During S-1A Commissioning

Perpendicular Baseline $< 150m$

Average (5 cycles) absolute Baseline for consecutive repeat passes

- Effective baseline [m]

Latitudes and Effective Baseline values

- Ascending
- Descending

worst case
Sentinel-1A SAR Timing Calibration

Measurement of *Range-Doppler geolocation* of known reference Point target in SAR image for estimation of *systematic SAR timing offsets* in:

- **Slant range** (residual internal electronic path delay and Sample Window Start Time)
- **Azimuth** (radar time and spacecraft GPS time)

⇒ Absolute Location Error (ALE) = predicted – measured (PTs)

Reference Point Targets (PTs)

- 4 Corner Reflectors (CRs) deployed at Torny-le-Grand, Switzerland
- 3 ESA transponders deployed in the Netherlands
- 3 DLR CRs and 3 DLR transponders

Geolocation accuracy may be affected by:

- Accuracy of orbital state vector
- Survey accuracy of reference targets
- Atmospheric path delay of radar signal
Data analyzed over **Torny-le-Grand corner reflector** site by University of Zurich, RSL
- 19 SM and 3 IW and use of **Precise Orbit Data (POD)**

Applied corrections:
- Internal path delay
- Tectonic motion
- Solid Earth tides motion
- Atmospheric path delay

<table>
<thead>
<tr>
<th></th>
<th>ALE Slant range offset</th>
<th>ALE Azimuth offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>1.28 ± 0.07 m</td>
<td>2.09 ± 0.49 m</td>
</tr>
<tr>
<td>IW</td>
<td>1.31±0.37 m</td>
<td>0.53±0.74 m</td>
</tr>
</tbody>
</table>

8x10^{-9} sec | 3.08x10^{-4} ± 6.79x10^{-5} sec

7.7x10^{-5} ± 1.1x10^{-4} sec
Burst Azimuth Spectral Alignment

Burst Timing Mis-synchronization: \(T_{\text{del}} \)

Antenna Mis-pointing (squint): \(\Delta f_{DC} \)

TOPS:
\[
\Delta f_{T_{\text{del,shift}}} = \frac{k_a \ k_{\text{rot}}}{k_a - k_{\text{rot}}} T_{\text{del}}
\]

ScanSAR:
\[
\Delta f_{T_{\text{del,shift}}} = k_a T_{\text{del}}
\]

\(\Rightarrow \) TOPS is more robust than ScanSAR
Datatake Start Time Estimation for Burst Synchronization – Position-tag Commanding

- Data acquisition (repeat orbit cycle) over the same ground location uses on-board schedule execution (OPS) based on **Orbit Position angle** (instead of timing)

Advantage: more accurate DT start time estimation
no need for precise orbit prediction or frequent update of on-board command queue

Calculation of OPS angle $\alpha_{\text{start_plan}}$ based on:
- S-1A Reference orbit
- use of an orbital point grid based on **burst cycle time**

Spacecraft Avionics converts (on-board) planned OPS angle ($\alpha_{\text{start_plan}}$) to time ($t_{\text{start}}$) by analytical propagation of GPS PVT data

PVT
(on-board GPS)

Instrument executes measurement according to t_{start}

First imaging PRI t_{echo}

Warm-up
Preamble
Imaging
Verification of S-1A IW DT Start Time Estimation for Burst Synchronization

- 498 IW measurements between Aug. 7th, 2014 (Reference Orbit reached) and Sept. 6th, 2014
- Measured performance includes:
 - Accuracy of the on-board conversion from OPS angles to instrument start time
 - Accuracy of instrument in achieving the requested start time

Average = 1.32 ms
Std dev = 1.28 ms

Duration of IW bursts:
- IW1: 0.8s
- IW2: 1.06s
- IW3: 0.83s
Sentinel-1A Burst Synchronization Results

48 InSAR product pairs
- 28 ascending geometry
- 20 descending geometry
- 46 in IW mode
- 2 in EW mode

Estimation of along-track burst synchronization:
- Orbital state vectors (POD, restituted orbits)
- Annotated raw start azimuth time (sensing time) of the bursts
- Fine Co-registration using cross-correlation and ESD techniques

Datatake-Level (Italy DT)

Burst (along-track) synchronization < 2.83 ms

Mean AT mismatch [ms]	Ascending	Descending
IW1 | 2.03 | 2.12 |
IW2 | 2.12 | 2.47 |
IW3 | 2.16 | 2.47 |

AT mismatch variation [ms]	IW1	IW2	IW3
IW1 | 2.41| 2.42| 2.47|
IW2 | 2.42| 2.47| |
IW3 | 2.47| | |
Sentinel-1A Burst Spectral Alignment Results

Mean Doppler Centroid difference < 20 Hz
due to stable attitude and antenna pointing

Common Doppler bandwidth > 95%

Satellite Pitch angle adjustment of 0.025 deg in Oct. 2014

⇒ Reduced mean Doppler centroids
Backup Slides
Demonstration of *Differential* and *Multi-Aperture (Squint)* SAR Interferometry

M6.0 South Napa Valley earthquake on August 24\(^{th}\), 2014

Use of Stripmap (SM-1) data pairs acquired on August 7\(^{th}\) and 31\(^{st}\), 2014

D-InSAR

MAI (MS-InSAR)

Image courtesy, DLR-IMF

Image courtesy, Andrea Monti Guarnieri, POLIMI
Sentinel-1 SAR TOPS Mode

TOPS (Terrain Observation with Progressive Scans in azimuth) for Sentinel-1 Interferometric Wide Swath (IW) and Extra Wide Swath (EW) modes

- **ScanSAR-type** beam steering in *elevation* to provide large swath width (IW: 250km and EW: 400km)
- Antenna beam is steered along *azimuth* from *aft* to the *fore* at a constant rate

- All targets are observed by the entire azimuth antenna pattern eliminating scalloping effect in ScanSAR imagery
- **Constant SNR** and *azimuth ambiguities*
- Reduction of azimuth resolution due to decrease in dwell time

- S-1 IW TOPS mode parameters:
 - ±0.6° azimuth scanning at Pulse Repetition Interval rate with step size of 1.6 mdeg.

Sentinel-1A IW dual-pol image, acquired over Namibia
Sentinel-1A Instrument Stability during long Datatakes (25min)

IW VV-VH

IW HH-HV

<table>
<thead>
<tr>
<th>Variation over 25 min:</th>
<th>Variation over 25 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>Gain</td>
</tr>
<tr>
<td>0.31 dB (VV)</td>
<td>0.32 dB (HH)</td>
</tr>
<tr>
<td>0.37 dB (VH)</td>
<td>0.34 dB (HV)</td>
</tr>
<tr>
<td>Phase</td>
<td>Phase</td>
</tr>
<tr>
<td>-13.6° (VV)</td>
<td>-13.8° (HH)</td>
</tr>
<tr>
<td>-14.3° (VH)</td>
<td>-13.9° (HV)</td>
</tr>
</tbody>
</table>