Merging ground-based and spaceborne InSAR data to monitor earth dams

L. Mascolo\(^{(1)}\), G. Nico\(^{(2)}\), A. Pitullo\(^{(3)}\)

\(^{(1)}\) DIAN srl, Matera, Italy
\(^{(2)}\) Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo, Bari, Italy
\(^{(3)}\) Consorzio di Bonifica di Capitanata, Foggia, Italy
Outline

- GB and SB-SAR
- GBSAR for dam monitoring
- Earth dam case study: GB and SB-SAR
- 3D displacement reconstruction
Azimuth synthetic (sub-)aperture

GBSAR systems use a sub-aperture $L < 4 \; \text{m}$

SATELLITE

\[
\lambda = 0.05 \; \text{m} \\
L = 10 \; \text{m} \\
H = 800 \; \text{km}
\]

Aperture = 4500 m

GBSAR

Horn antennas with 20° beamwidth

\[
\lambda = 0.018 \; \text{m} \\
D = 500 \; \text{m}
\]

Aperture = 170 m
Spatial resolution (GBSAR)

Range resolution:

\[\Delta r_s = \frac{c \cdot 1}{2 \cdot B} \]

Azimuth resolution:

\[\Delta x = \frac{R \cdot \lambda}{4 L \cos^2 \varphi} \]

depending on target distance \(R \), angular position \(\varphi \) with respect to the centre of the rail and its length (synthetic aperture \(L \))
Measuring dam displacements
Measuring dam displacements
Measuring dam displacements

Displacement ΔR measured by GBSAR

Down-stream displacement

Displacement $\Delta \mathbf{R}$ measured by GBSAR

x_R, y_R, z_R

GBSAR rail

$\mathbf{P}(x,y,z)$

Difficult to displace dams
Measuring dam displacements
Measuring dam displacements
Measuring dam displacements
Earth dam: GBSAR Installation sites
Earth dam (1-day GBSAR campaign)

Amplitude Coherence Phase

Earth dam (1-day GBSAR campaign)
Detail installation site (left)
Detail installation site (right)
Detail installation site (right)
Earth dam: CSK SAR data
Earth dam: CSK SAR data
Fig. 1. Sketch with the geometry of ascending and descending InSAR geometries with unit vectors (red) \(\mathbf{u}^a \) and (blue) \(\mathbf{u}^d \), radar incidence angles \(\vartheta^a \) and \(\vartheta^d \), and angles \(\beta^a \) and \(\beta^d \) related to ground-track azimuthal angles. The horizontal components of unit vectors \(\mathbf{u}^a \) and \(\mathbf{u}^d \) are also depicted. For the sake of clarity, the common vertical components of unit vectors are omitted.

Ascending and descending SB SAR data

The components of unit vectors \mathbf{u} (\mathbf{u}^a or \mathbf{u}^d), respectively, along the West-East, South-North, and vertical directions, are given in terms of the local radar incidence angles ϑ (ϑ^a or ϑ^d) and ground-track azimuthal angles α (α^a or α^d) as

$$
\begin{align*}
 u_E &= \sin \vartheta \sin \left(\alpha - \frac{\pi}{2}\right) \\
 u_N &= \sin \vartheta \cos \left(\alpha - \frac{\pi}{2}\right) \\
 u_Z &= \cos \vartheta
\end{align*}
$$

The three components of the terrain displacement velocity $\mathbf{v} = \{v_E, v_N, v_Z\}$ are usually estimated by minimizing the energy function

$$
E = \sum_{i \in \{a,d\}} \left(v_{PS}^i - u_E^i v_E - u_N^i v_N - u_Z^i v_Z \right)^2
$$

where v_{PS}^a and v_{PS}^d are the velocities along the ascending and descending orbits.
The first derivatives of energy E with respect to each component of the unknown Terrain displacement velocity v set to zero so obtaining the following linear equation:

$$
\mathbf{M} \cdot \mathbf{v} = \mathbf{a} \iff \begin{bmatrix}
 u^a_E v^a_E + u^d_E v^d_E \\
 u^a_E u^a_N + u^d_E u^d_N \\
 u^a_E u^a_Z + u^d_E u^d_Z \\
 u^a_N v^a_E + u^d_N v^d_E \\
 u^a_N u^a_N + u^d_N u^d_N \\
 u^a_N u^a_Z + u^d_N u^d_Z \\
 u^a_Z v^a_E + u^d_Z v^d_E \\
 u^a_Z u^a_N + u^d_Z u^d_N \\
 u^a_Z u^a_Z + u^d_Z u^d_Z
\end{bmatrix} \begin{bmatrix}
 v_E \\
 v_N \\
 v_Z
\end{bmatrix} = \begin{bmatrix}
 u^a_E v^a_{GPS} + u^d_E v^d_{GPS} \\
 u^a_N v^a_{GPS} + u^d_N v^d_{GPS} \\
 u^a_Z v^a_{GPS} + u^d_Z v^d_{GPS}
\end{bmatrix}
$$

The matrix \mathbf{M} depends could be ill-conditioned for look an track angle values of Spaceborne SAR missions.
Earth dam: GB and SB-SAR data

\[
\begin{pmatrix}
\alpha_X & \alpha_Y & \alpha_Z \\
\beta_X & \beta_Y & \beta_Z \\
\gamma_X & \gamma_Y & \gamma_Z
\end{pmatrix}
\begin{pmatrix}
D_X \\
D_Y \\
D_Z
\end{pmatrix}
=
\begin{pmatrix}
d_A \\
d_B \\
d_S
\end{pmatrix}
=
\begin{pmatrix}
\frac{\lambda_{Ku}}{4\pi} \varphi_A \\
\frac{\lambda_{Ku}}{4\pi} \varphi_B \\
\frac{\lambda_X}{4\pi} \varphi_S
\end{pmatrix}
\]
Earth dam: GB and SB SAR data

\[
\begin{align*}
\mathbf{u}_r^L &= \begin{bmatrix}
\cos \vartheta_{GBSAR}^L & \cos \alpha_{GBSAR}^L \\
\cos \vartheta_{GBSAR}^L & \sin \alpha_{GBSAR}^L \\
\sin \vartheta_{GBSAR}^L & \\
\end{bmatrix} \\
\mathbf{u}_r^R &= \begin{bmatrix}
\cos \vartheta_{GBSAR}^R & \cos \alpha_{GBSAR}^R \\
\cos \vartheta_{GBSAR}^R & \sin \alpha_{GBSAR}^R \\
\sin \vartheta_{GBSAR}^R & \\
\end{bmatrix}
\end{align*}
\]
Geolocation and merging
Conclusions and future work

- An experiment has been carried out to merge GB and SB-SAR data to reconstruct the 3D displacement velocities.

- Results could be useful to set a protocol for the monitoring of dams.

- The future work will focus on using 3D displacement information provided by InSAR in dam modelling.