

Constructing high-resolution, absolute maps of atmospheric water vapor by combining InSAR and GNSS observations

Fadwa Alshawaf, Stefan Hinz, Michael Mayer, Franz J. Meyer

fadwa.alshawaf@kit.edu

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Atmospheric water vapor

Weather and Climate:

Most active greenhouse gas
Key element in the hydrological cycle

(In)SAR: (Interferometric) Synthetic Aperture Radar GNSS: Global Navigation Satellite Systems

Atmospheric water vapor

Weather and Climate:

- Most active greenhouse gas
 Key element in the hydrological cycle
- Highly variable in time/space
- Available data are limited in temporal/spatial resolutions

(In)SAR: (Interferometric) Synthetic Aperture Radar GNSS: Global Navigation Satellite Systems

Atmospheric water vapor

Weather and Climate:

- Most active greenhouse gas
 Key element in the hydrological cycle
- Highly variable in time/space
- Available data are limited in temporal/spatial resolutions

Noise

Geodesy and Remote Sensing:

- Source of error
- Methods for error mitigation
 - Empirical models
 - Calibration using external data
 - Time series analysis

(In)SAR: (Interferometric) Synthetic Aperture Radar GNSS: Global Navigation Satellite Systems

Signal

Objectives

5

Study area and data sets

- (In)SAR (2003-2008)
- GNSS (since 2002)
- Meteorology

6

MERIS (Reference)

7

 $\phi_{i,j} = \phi_{topography} + \phi_{displacement} + \phi_{atmosphere} +$

 $\phi_{orbit} + \phi_{ref} + \phi_{noise}$

Poster "Constructing high-resolution maps of atmospheric water vapor using InSAR"

8

Least squares inversion

9

- Maps of partial wet delay \rightarrow water vapor
- Very good agreement with MERIS observations

- Least squares inversion
- Maps of partial wet delay \rightarrow water vapor
- Very good agreement with MERIS observations

- + Maps of high spatial resolution
- Partial measurements \rightarrow no absolute values

- Least squares inversion
- Maps of partial wet delay \rightarrow water vapor
- Very good agreement with MERIS observations

How to reconstruct the total water vapor content? It is not only one offset \rightarrow A value has to be determined for each point

Data combination

P: Pressure T: Temperature RH: Relative Humidity

Data combination: Application to the data

C [mm]	lpha [km ⁻¹]	$\Delta L_{ m min}$ [mm]
8.0375	4.1342	25.0434

Data combination: Application to the data

- Compute a value at each persistent scatterer
 digital elevation model is required
- Iterative solution

RH: Relative Humidity

Data combination: Results

MEAN [mm]	-0.43	
STD [mm]	0.84	
RMS [mm]	0.91	
Corr. Coeff.	0.92	

18 F. Alshawaf, Institute of Photogrammetry and Remote Sensing

Data combination: Results

Day	CC [%]	RMS [mm]	MEAN [mm]	STD [mm]
June 27, 2005	75	1.00	0.07	1.00
September 5, 2005	87	0.88	0.15	0.86
July 17, 2006	80	0.76	-0.03	0.75
April 23, 2007	92	0.91	-0.43	0.84

Alshawaf, F., S. Hinz, M. Mayer, F.J. Meyer (2015), Constructing accurate maps of atmospheric water vapor by combining interferometric synthetic aperture radar and GNSS observations, *Journal of Geophysical Research: Atmospheres*, 120 (4), pp. 1391–1403.

Conclusions and Outlook

WRF: Weather Research and Forecasting

Conclusions and Outlook

Thank you very much for your attention