Extraction of Subsurface Features from InSAR-derived Digital Elevation Models

Si-Ting Xiong a, Jan-Peter Muller a,b *

aImaging Group, Mullard Space Science Laboratory (MSSL), University College London
bChair, Terrain Mapping Sub-Group, CEOS WG on Calibration & Validation
Outline

• Context
 – Radar penetration & Subsurface mapping
 – Global DEMs (Digital Elevation Models)
• Materials and Methods
• Results
 – Extraction of subsurface features
 – Comparisons of different DEMs
• Conclusions
Introduction – Radar penetration & subsurface mapping

• radar penetration:
 – roughness of surface relative to wavelength: homogeneous, fine-grained thin (1-2 m thick) cover materials.
 – dielectric property: moisture content is less than about 1.0%.

• subsurface mapping:
 – a low-loss thin sand layer enhances the capability to image the subsurface sand-bedrock interface.
 – the skin depth ranges from 1.5 to 6 m at L-band, the SIR-A frequency shown by laboratory experiment.
 – field observations showed that the sand layer thickness ranges from 0.8 to 2 m.

 Courtesy P. Paillou et al.
Introduction – Global DEMs

• Global DEMs up to 30 m are available for public use
 – SRTM-C and –X DEM
 – ASTER GDEM
 – ICESat Elevation dataset

• InSAR-derived DEM for specific requirement
 – ALOS-PALSAR
 – TanDEM-X

• Problems of application to hyperarid areas
 – DSM (Digital Surface Model) or DSSM (Digital SubSurface Model) in hyperarid area?
 – Detect subsurface features? Bedrock height Mapping?
 Or surface lowered due to deep channels
Study Sites

• Eastern Sahara
 – Kufrah River
 • southeast Libya, 23°N-24°N, 23°E-24°E
 • a tributary of a paleodrainage system passing from south to north till Sarir Dalmah in Libya.

• Ténéré Desert
 • northeast Mali and northwest Chad
 • 15°N-20°N, 10°E-20°E

– Gilf Kebir Plateau
 • southwest Egypt, 23°N-24°N, 26°E-28°E
 • 1,300 crater-like features over 4,000 km² (Paillou, P., Schuster, M., Tooth, S., et al., 2009)
Several global DEM datasets are used to investigate their penetration depth, which is a key characteristic in terms of subsurface features detection and bedrock mapping.

<table>
<thead>
<tr>
<th></th>
<th>ASTER GDEM</th>
<th>SRTM-C DEM</th>
<th>SRTM-X DEM</th>
<th>ICESat /GLA14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tile size</td>
<td>1° × 1°</td>
<td>15′ × 15′</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Posting interval</td>
<td>1 arc-second (~ 30 m)</td>
<td>70 m footprint / 150 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic coordinates</td>
<td>Geographic lat/lon</td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Datum</td>
<td>WGS84/EGM96</td>
<td>WGS84/</td>
<td>TOPEX/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WGS84 ellipsoid</td>
<td>Poseidon</td>
<td></td>
</tr>
<tr>
<td>Nodata Value</td>
<td>-9999</td>
<td>-32767</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Horizontal accuracy</td>
<td>±20 m</td>
<td>±20 m(abs.)</td>
<td>±20 m(abs.)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>±15 m (rel.)</td>
<td>±15 m (rel.)</td>
<td>±15 m (rel.)</td>
<td></td>
</tr>
<tr>
<td>Vertical accuracy</td>
<td>±30 m</td>
<td>±16 m (abs.)</td>
<td>±16 m (abs.)</td>
<td>cm scale</td>
</tr>
<tr>
<td></td>
<td>±10 m (rel.)</td>
<td>±6 m (rel.)</td>
<td>±6 m (rel.)</td>
<td></td>
</tr>
</tbody>
</table>
Materials and Methods

- ALOS-PALSAR 25 m Forest and non-Forest (FNF) map was used to delineate paleo-channels.
 - Japan Aerospace Exploration Agency (JAXA), has produced the 4 year, 25m spacing global PALSAR mosaics from 2007 to 2010 using the accurate SAR processing.
 - PALSAR HH, HV backscatter is slope corrected and ortho-rectified using the SRTM, and the radiometrically calibrated.

Courtesy M. Schimada et al., JAXA
A paleoriver is delineated on PALSAR HH backscatter image and overlaid on Gaussian-filtered and hill-shaded SRTM-C DEM.
Results - Extraction of subsurface features

Eastern Sahara

A paleoriver is delineated on PALSAR HH backscatter image and overlaid on Gaussian-filtered and hill-shaded SRTM-C DEM.
Results - Extraction of subsurface features

Eastern Sahara

A paleoriver is delineated on PALSAR HH backscatter image and overlaid on Gaussian-filtered and hill-shaded SRTM-C DEM.
Results - Extraction of subsurface features

Ténéré Desert – Part A
Results - Extraction of subsurface features
Ténéré Desert – Part A
Results - Extraction of subsurface features

Ténéré Desert – Part A

PALSAR doesn’t show this linear features due to affluence by low backscatter from background.

Delineated from PALSAR HH backscatter
Results - Extraction of subsurface features

Ténéré Desert – Part A

PALSAR doesn’t show this linear features due to affluence by low backscatter from background.

Delineated from PALSAR HH backscatter

fractures or faults?
Results - Extraction of subsurface features

Ténéré Desert – Part A

None of the linear and circular features are shown in Landsat image, whereas most recognisable in PALSAR HH backscatter image.

Most circular features are shown in SRTM-C DEM, but less apparent in PALSAR images.
Results - Extraction of subsurface features

Ténéré Desert – Part B

Optical image: only shows outcrop rock.

SRTM-C DEM: rock with elevation different from background, also show different forms of sand cover.

ALOS-PALSAR image: bedrock under thin sand layer.

only outcrop rock can be seen

Landsat image

SRTM-C DEM

ALOS/PALSAR
Optical image: only shows outcrop rock.

SRTM-C DEM: rock with elevation different from background, also show different forms of sand cover.

ALOS-PALSAR image: bedrock under thin sand layer.
DEM appearance to show surface expression of buried paleorivers.
In this study area, ASTER GDEM is very noisy.

SRTM-C DEM agrees closely with ICESat/GLA14.

However, SRTM-X DEM has a large bias with ICESat/GLA14 and SRTM-C DEM, which appears to be caused by phase adjustment difficulties (Marschalk, U and Roth, A et al., 2004).
Results - Comparisons of different DEMs

Gilf Kebir Plateau

GT1

<table>
<thead>
<tr>
<th>DEM-difference</th>
<th>Mean</th>
<th>Std</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTER - ICESat</td>
<td>1.90</td>
<td>15.52</td>
</tr>
<tr>
<td>SRTM-C - ICESat</td>
<td>-0.16</td>
<td>2.41</td>
</tr>
</tbody>
</table>

GT2

<table>
<thead>
<tr>
<th>DEM-difference</th>
<th>Mean</th>
<th>Std</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTER - ICESat</td>
<td>-3.43</td>
<td>8.72</td>
</tr>
<tr>
<td>SRTM-C - ICESat</td>
<td>0.11</td>
<td>2.41</td>
</tr>
<tr>
<td>SRTM-X - ICESat</td>
<td>-3.96</td>
<td>3.37</td>
</tr>
</tbody>
</table>

GT3

<table>
<thead>
<tr>
<th>DEM-difference</th>
<th>Mean</th>
<th>Std</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTER - ICESat</td>
<td>-2.93</td>
<td>13.06</td>
</tr>
<tr>
<td>SRTM-C - ICESat</td>
<td>0.42</td>
<td>1.70</td>
</tr>
<tr>
<td>SRTM-X - ICESat</td>
<td>-5.37</td>
<td>3.88</td>
</tr>
</tbody>
</table>

GT4

<table>
<thead>
<tr>
<th>DEM-difference</th>
<th>Mean</th>
<th>Std</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTER - ICESat</td>
<td>6.23</td>
<td>14.11</td>
</tr>
<tr>
<td>SRTM-C - ICESat</td>
<td>3.00</td>
<td>4.12</td>
</tr>
<tr>
<td>SRTM-X - ICESat</td>
<td>-1.56</td>
<td>3.71</td>
</tr>
</tbody>
</table>
ASTER GDEM is also very noisy.

SRTM-C DEM agrees closely with ICESat/GLA14, but 2-3 m bias within steep slope area.

SRTM-X DEM has a negative bias of ≈2~5 m from ICESat/GLA14.
R: SRTM-C DEM, G:PALSAR-HH, B:ASTER GDEM

- ASTER GDEM acts the worst to show the profile of paleoriver.
- SRTM-C DEM shows lower elevations across paleoriver bed, while PALSAR-HH image displays lower backscatter.
Results - Comparisons of different DEMs

Detail investigation of eastern Sahara

Topographic features analysing

- More information shown by combining both SRTM-C DEM and ALOS-PALSAR backscatter.
- Both SRTM-C DEM and PALSAR backscatter image show the crater-like feature.

R: SRTM-C DEM, G: PALSAR-HH, B: ASTER GDEM

FRINGE 2015 WORKSHOP
23–27 March 2015 | ESA-ESRIN | Frascati (Rome), Italy
1. SRTM-C DEM agrees closely with ICESat elevation and are superior to ASTER GDEM and SRTM-X DEM, but is of insufficient accuracy in terms of heighting expressions of subsurface features ability over hyperarid regions.

2. Comparing with SRTM DEM, ALOS/PALSAR image shows more detailed subsurface features, but is easily affected by similar backscatterers from background.

3. Combining subsurface features extraction results of SRTM-C DEM and PALSAR image, the study shows a great potential to map the bedrock elevation by using InSAR of lower frequency and longer baseline, such as ALOS-2/PALSAR-2 datasets.
Thank you for your attention!
Questions & Suggestions please!