Ice Velocity Mapping Using TOPS SAR Data and Offset Tracking

Jørgen Dall\(^1\), Anders Kusk\(^1\), Ulrik Nielsen\(^1\), John Peter Merryman Boncori\(^2\)

\(^1\) Technical University of Denmark, \(^2\) Instituto Nazionale di Geofisica e Vulcanologia, Italy
Outline

- Introduction
- Problem (TOPS + large displacements)
- Method
- Results
- Conclusions
Offset tracking

<table>
<thead>
<tr>
<th></th>
<th>Feature tracking</th>
<th>Speckle tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Cross-correlation</td>
<td>Cross-correlation</td>
</tr>
<tr>
<td>Data type</td>
<td>Detected</td>
<td>Detected or complex</td>
</tr>
<tr>
<td>Features</td>
<td>Required</td>
<td>Not required</td>
</tr>
<tr>
<td>Coherence</td>
<td>Not required</td>
<td>Required</td>
</tr>
<tr>
<td>Patch size</td>
<td>Larger</td>
<td>Smaller</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Coarser</td>
<td>Finer</td>
</tr>
</tbody>
</table>
Offset tracking with TOPS data

1st acquisition
Offset tracking with TOPS data

1st acquisition

IW SLC product:
• Spatial overlap
• No spectral overlap => speckle pattern differs
Offset tracking with TOPS data

1st acquisition

2nd acquisition

GRD product: features are preserved when crossing the burst seam
Offset tracking with TOPS data

GRD product: Speckle changes when crossing the burst seam => gap

1st acquisition

2nd acquisition
Offset tracking with TOPS data

SLC product: gaps can also be avoided with speckle tracking if ice displacement + patch size < overlap
Offset tracking with TOPS data

1st acquisition

2nd acquisition

\textbf{SLC product}: gaps can also be avoided with speckle tracking if ice displacement + patch size < overlap
SLC product: gaps can also be avoided with speckle tracking if ice displacement + patch size < overlap
IPP processor

• Intended for DInSAR (DEM elimination & Double Difference)

• Upgraded for ESA’s Climate Change Initiative (GrIS CCI, AIS CCI):
 - Offset Tracking
 - Bulk processing (cloud computing)
 - Sentinel-1 IW SLC product
Upenavik glaciers

M. Fahnestock et al., 1992
Ice velocity (Sentinel-1 IW SLC)

Upernavik, Oct-Dec 2014
Greenland Ice Sheets CCI

Normalized cross-correlation:

\[
NCC(i,j) = \frac{\sum_{k,l} (s(i+k, j+l) - \mu_s)(r(k,l) - \mu_r)}{\sqrt{\sum_{k,l} (s(i+k, j+l) - \mu_s)^2 \sum_{k,l} (r(k,l) - \mu_r)^2}}
\]

Figures of merit:
- \(\text{max}(NCC)\)
- ‘signal-to-noise ratio’ (SNR)
Approach

1st acquisition

2nd acquisition

Corresponding bursts
(exploited by IPP)
Corresponding bursts
(exploited by IPP)
Approach

Consecutive bursts

1st acquisition

2nd acquisition
Approach

1st acquisition

Patch: 256 x 64 (ra x az pixels)

Increment: 40, 10 (ra, az pixels)

Consecutive bursts (analysed in this study)

2nd acquisition
Questions addressed

Questions:

• In the overlap area four multi-temporal cross-correlations can be computed. Which ones are useful?
• Where do consecutive (multi-temporal) bursts decorrelate?
• Does the GRD product lead to more velocity gaps?
• Do the dual squint angles within the burst overlap provide valuable glaciological information?
Results: NCC
Results: NCC

IW3

IW2

IW1
Results: azimuth displacement
Results: azimuth displacement
Results: azimuth displacement
Results: azimuth displacement

IW1
Results: SNR
Results: SNR

IW3 | IW2 | IW1
Landsat imagery
Landsat imagery
Conclusions

- Velocity map successfully generated from Sentinel-1 IW SLC data in areas with and without features
- At high elevations, two corresponding (multi-temporal) bursts can be successfully cross-correlated, but two consecutive bursts cannot (presumably due to a lack of ice features)
- At low elevations (where ice features are often abundant) also consecutive (multi-temporal) bursts can often be successfully cross-correlated
- The IW GRD product may be applicable for (gap-free) feature tracking
- The IW SLC product is required for (gap-free) speckle tracking