Urban Mapping & Change Detection

Sebastian van der Linden
Humboldt-Universität zu Berlin, Germany
Introduction - The urban millennium

Percentage Urban
- 0-20%
- 20-40%
- 40-60%
- 60-80%
- 80-100%

City Population
- 1-5 million
- 5-10 million
- 10 million or more

Source: United Nations
Source: Google Earth
Introduction – Urban remote sensing

Berlin-Brandenburg area in *Global Urban Footprint* product of DLR
Introduction – Effects of impervious surfaces

Source: Wikimedia Commons
Introduction – Effects of impervious surfaces

Urban surface type influences the microclimate and other environmental variables.

\[y = 0.07x + 26.40 \quad R^2 = 0.66 \]

\[y = -0.06x + 32.67 \quad R^2 = 0.66 \]
Introduction – Urban remote sensing

With more than half of the world’s population living in cities and rapid urbanization rates, remote sensing plays a pivotal role in monitoring urban environments.

Especially in less developed countries and for fast growing urban agglomerations remote sensing is often the only reliable source of spatial information.

Most urban environmental models use remotely sensed maps as input.

Remote sensing analyses usually focus on
- mapping urban extent and growth
- mapping urban composition
Introduction – V-I-S conceptual framework

Urban land
- Impervious
 - Roof
 - Pavement
- Soil
- Vegetation
 - Grass
 - Tree

VIS concept
(Ridd 1995)
Challenges of urban remote sensing

Urban areas are composites of many different surface types with greatly varying environmental impacts.

Spectrally complex: high intra-class class variety and often no inter-class differences.
Challenges of urban remote sensing

High spatial and temporal dynamics require high spatial resolution

HyMap (3.6 m) simulated EnMAP (30 m)
Challenges of urban remote sensing

High number of mixed pixels.
Complex 3-D-geometry and illumination.

view-angle $\theta_v = \pm 30.7^\circ$
Mapping urban growth from spectral and SAR data

Urban growth can be mapped reliably by means of remote sensing. Taubenböck et al. use data from Terra-SAR and Landsat to quantify urban growth since 1975 in four time steps.

Source: Taubenböck et al., 2014
Mapping urban growth ...

Major cities are mapped in
1975 – Landsat MSS
1990 – Landsat TM
2000 – Landsat ETM+
2010 – TerraSAR-X

Source: Taubenböck et al., 2014
Mapping urban growth from spectral and SAR data

Landsat and TerraSAR data are classified with different approaches.

Source: Taubenböck et al., 2014
Mapping urban growth ...

For the 2010 TerraSar-X classification the speckle divergence (c) is used to identify areas with high vertical structures. These are transferred into urban seeds (d), which are then generalized to delineate the urban footprint.

Source: Taubenböck et al., 2014
Mapping urban growth from spectral and SAR data

Griffiths et al. monitor the growth of Dhaka, Bangladesh, for 1990, 2000 and 2006 based on Landsat TM/ETM+ and ERS-1/ASAR data.

By fusing the multispectral optical and the SAR data they can map urban extent reliably in this heavily monsoon influenced area of rapid urbanization.

Both sensor types contribute to the high overall accuracy

Source: Griffiths et al., 2010
Mapping urban growth from spectral and SAR data

Source: Griffiths et al., 2010
Mapping urban growth from spectral and SAR data

Leinenkugel et al. map the percent impervious surface for the city of Can Tho, Vietnam using Terra-SAR X and Spot-5 data.

They use the high resolution SAR data to delineate urban surfaces and then use the Spot-5 data and a regression approach to predict impervious surface within the pixels of the delineated area.

The regression model is training using information from high resolution Quickbird data.
Mapping urban growth ...

Object-based delineation of settlement footprints from TerraSAR-X data starting with the identification of:
(a) distinct backscattering centres (DBC) and
(b) potential urban structures (PUS)
(c) urban areas (UA),
(d) water surfaces (WS, WL)
(e) regions completely enclosed by urban objects (EBU)
(f) of the urban footprint (GUF).

Source: Leinenkugel et al., 2011
Mapping urban composition from spectral data

Ridd assumes, every pixel is composed of impervious surface, vegetation or pervious land cover.

Ridd’s V-I-S concept is based on a thematical framework. It is not based on the spectral characteristics of urban areas.

Source: Ridd, 1996
Small analyses more than 24 urban cities and concludes that the spectral properties working with Landsat ETM+ always relate to the degree of brightness and the portion of vegetation. This results in a mixing triangle in the first two PC components.

Source: Small, 2005
Mapping urban composition from spectral data

Source: Small, 2005
Mapping urban composition from spectral data

Using higher spatial and spectral characteristics together with machine learning, van der Linden and colleagues showed that urban more surface types may be mapped.

Source: van der Linden et al., 2007
Mapping urban composition from spectral data

Given the high number of mixed pixels, quantitative mapping appears more useful than traditional classification to describe urban composition. Concepts for quantitative mapping most often assume a linearly mixed spectrum, which can be decomposed into “pure” components, e.g. by spectral mixture analysis.
Okujeni and van der Linden introduced synthetically mixed training data to use machine learning for unmixing.
Impervious-Vegetation-Soil: RGB

EnMAP (30 m) HyMap (9 m) Landsat (30 m)

- high-density urban area
- med.-density urban area
- low-density urban area
- mixed peri-urban area
- agric./forest area

Source: Okujeni et al., 2015
All VIS components can be modelled at high accuracy using SVR with synthetic mixtures.

The decrease in accuracy from 9 m to 30 m is relatively low.

EnMAP data leads to slightly better results than Landsat data.

Results for soils are comparable.

Source: Okujeni et al., 2015
Source: Okujeni et al., 2015
Mapping urban composition from spectral data

The SVR with synthetic mixtures allows extending the VIS framework for two vegetation and impervious types, although a clear decrease in accuracies can be observed for tree cover. This time, the accuracy from EnMAP is clearly better than for Landsat.

Source: Okujeni et al., 2015
Mapping urban composition from spectral data

UEIS Impervious map

EnMAP Impervious map

0% - 20%

20% - 40%

40% - 60%

60% - 80%

80% - 100%
References

If not indicated differently, figures are taken from presentations or the dissertations of S. van der Linden and A. Okujeni. See edoc.hu-berlin.de.