Drought Monitoring and Assessment

Z. (Bob) Su
Professor of Spatial Hydrology and Water Resources Management
ITC, University of Twente
The Netherlands
z.su@utwente.nl
www.itc.nl/wrs
What is the difference?
Learning Objectives

1. Understand basic ideas for estimating water availability
2. Familiarize with data products for deriving different water availability terms
3. Understand the possibilities and limitations for estimating water availability using different approaches
4. Familiarize with the applications
A LONG HISTORY

Serious droughts have occurred in Australia and Africa, among other regions, in recent decades, but more severe ‘megadroughts’ have occurred on virtually every continent throughout history.

4,200 YEARS AGO
GLOBAL MEGADROUGHT
Where: North America but spread to Europe, Africa and Asia. Lasted for several centuries.
Cause: Cooling of the North Atlantic, which reduced rainfall by as much as 30%.
Impact: Linked to demise of Akkadian Empire and civilizations in Greece, Egypt and the Indus Valley of Pakistan.

1876 – 78
THE GREAT FAMINE
Where: Began in southern India and spread to the tropics and China.
Cause: Severe El Niño that led to the failure of the Asian monsoon. Food shortages for the poor worsened by Colonial-era imperialism.
Impact: More than 5 million deaths in India and 30 million in total.

1901
FEDERATION DROUGHT
Where: Australia. It covered half the continent by 1901.
Cause: Lack of rainfall.
Impact: Reduced cattle from 12 million to 7 million and sheep from 91 million to 54 million. Led to a massive failure of the wheat crop and caused the Darling River in New South Wales to dry up.

1930s
THE US DUST BOWL
Where: Centred on the Great Plains but covered 60% of the United States. Lasted all decade.
Cause: Low rainfall and poor land management (deep ploughing).
Impact: Agricultural production fell by 17%. Cost the US government US$13 billion in aid and 2.5 million people left the affected states.

1940s
CENTRAL EUROPEAN DROUGHT
Where: Central and Eastern Europe in 1945–47.
Cause: Low rainfall.
Impact: Devastated crops. In some countries, such as Romania, 90% of the population went hungry. In parts of the Czech Republic, the cereal yield fell by about 30%.

1970s – 1980s
SAHEL DROUGHT
Where: In 1983 it covered 65% of the Sahel, or around 8 million km².
Cause: Probably natural variation in ocean temperatures and atmospheric dynamics, coupled with human-driven climate change.
Impact: Famine led to 600,000 deaths in 1972–75, and again in 1984–85.
RECENT DROUGHTS

In 2011 and 2012, drought occurred on almost every continent, partly because of an unusually strong La Niña that caused record rainfall in Australia and led to severe water shortages in Sudan. Hundreds of millions of hectares of crops were destroyed, from wheat in Russia to sugar cane in India. The map shows how rainfall deviated from the norm in this period and highlights the regions most affected by drought — many of which are major growing regions for the world’s top four staple crops.

Black Sea region
Tens of millions of hectares of wheat damage worth US$1 billion in Russia alone.

Sahara
In Mali, hundreds of thousands of people driven from their homes by crop failure and high cereal prices, intensified by conflict.

United States and Mexico
Severe drought cost billions of US dollars in the United States and led to food shortages in Mexico. By early 2013, 80% of the contiguous US was affected.

Argentina and Brazil
Yield losses of 40% in some maize-growing regions. Loss of 30% of sugar cane in some parts of Brazil. Fall in soybean yield in both countries.

Horn of Africa
Up to half of crops and livestock lost. Human mortalities number 50,000–100,000, mainly in Somalia, Ethiopia and Kenya.

China
Millions of people and livestock left without drinking water, and 5 million hectares of crops damaged.

The top four crops account for 45% of all cultivated land and at least 40% of human calorie intake. The main growing regions for each are indicated on the map.

(O. Heffernan)
DEFINING DROUGHT

Characterized by unusual and persistent dry weather, drought is caused by shifts in global weather patterns such as El Niño, but also increasingly by human-induced climate change. Identifying drought is difficult, however, so there is considerable uncertainty about whether it is getting any worse.

METEOROLOGICAL DROUGHT

Occurs when a persistent decline in precipitation reduces the water available on land in snowpack, ice sheets, lakes and rivers.

SOIL-MOISTURE DROUGHT

Occurs when the soil dries out as water is evaporated back to the atmosphere, drains deeper into the soil, and is extracted by humans.

HYDROLOGICAL DROUGHT

Occurs when water reserves in aquifers, lakes and reservoirs fall below average levels owing to high human demand or low rainfall.

(O. Heffernan)
DROUGHT INDICES (LOTS OF THEM)

- Percent of Normal (PN)
- Standard Precipitation Index (SPI)
- Palmer Drought Severity Index (PDSI)
- Crop Moisture Index (CMI)
- Surface Water Supply Index (SWSI)
- Reclamation Drought Index (RDI)
- Evapotranspiration Deficit Index (ETDI)

Eden, U. (2012) Drought assessment by evapotranspiration mapping in Twente, the Netherlands. Enschede, University of Twente Faculty of Geo-Information and Earth Observation (ITC), 2012.
Water cycle and its link to climate

(Su, et al., 2010, Treatise on Water Science)
Land-Atmosphere Interactions - Terrestrial Water, Energy and Carbon Cycles

- Solar Radiation
- Thermal radiation
- Sensible Heat (diffusion/convection)
- Latent Heat (Phase change)
- Precipitation
- Wind
- Gases
- Advection
- Biochemical Processes
- Soil Heat (Conduction)
- Water & vapour
What is Drought?

Dry Condition: No transpiration
Quantitative Approaches for Drought Monitoring and Prediction

• **Approach 1: Surface Energy Balance**
 - To derive relative evaporation & relative soil moisture in the root zone from land surface energy balance
 - To define a quantitative drought severity index (DSI) for large scale drought monitoring

• **Approach 2: Soil Moisture Retrieval**
 - To determine surface soil moisture
 - To assimilate surface SM into a hydrological model to derive root zone soil moisture

• **Approach 3: Total water budget**
Drought Monitoring & Prediction

Climate & Satellite Information System

Meteorological Data

Surface Energy Balance System (SEBS)

Surface Soil Moisture

Data Assimilation (to infer root zone water availability)

Drought Information System (Drought Severity Distribution)

Internet

Decision Makers
From Energy Balance to Water Balance

\[\theta(t_2) - \theta(t_1) = P_0 + I_0 + I_c - E \]

\[E_{\text{dry}} \sim \theta_{\text{dry}} \]

\[E_{\text{wet}} \sim \theta_{\text{wet}} \]

\[R = \frac{\theta - \theta_{\text{dry}}}{\theta_{\text{wet}} - \theta_{\text{dry}}} = \frac{E}{E_{\text{wet}}} = \frac{\lambda E}{\lambda E_{\text{wet}}} = \Lambda_r \]

\[DSI = 1 - R = \frac{H - H_{\text{wet}}}{H_{\text{dry}} - H_{\text{wet}}} \]

R: Relative Plant Available Soil Water Content
DSI: Drought Severity Index

(Su et al., 2003)
Relationship of evaporative fraction to surface variables (albedo, fractional vegetation coverage and surface temperature)

- The relative evaporation is given as

\[
\Lambda_r = \frac{E}{E_{wet}} = s \left(\frac{\theta - \theta_{dry}}{\theta_{wet} - \theta_{dry}} \right)
\]

\[
\Lambda_r \approx \frac{\theta - \theta_{dry}}{\theta_{wet} - \theta_{dry}}
\]
The relative evaporation is given as

\[
\Lambda_r = 1 - \frac{H - H_{\text{wet}}}{H_{\text{dry}} - H_{\text{wet}}}
\]

\[
\Lambda_r = 1 - \frac{(\theta_0 - \theta_a) - (\theta_0 - \theta_a)_{\text{w}}}{(\theta_0 - \theta_a)_{\text{d}} - (\theta_0 - \theta_a)_{\text{w}}}
\]

\[
\Lambda_r = 1 - \frac{r_e (\theta_0 - \theta_a)_{\text{d}} - (r_e)_{\text{w}}}{(r_e)_{\text{d}} - (r_e)_{\text{w}}}
\]

The SEBS algorithm (Su, 2002; Jia et al., 2003)
The surface-air potential temperature difference is given as

\[
\theta_o - \theta_a = \frac{r_i + r_e (R_n - G) - e^* - e}{\rho_a c_p \gamma} \left(1 + \frac{\Delta}{\gamma} \right)
\]

\[
(\theta_o - \theta_a)_w = \frac{r_{e,w} (R_n - G) - e^* - e}{\rho_a c_p \gamma}
\]

\[
(\theta_o - \theta_a)_d = \frac{r_{e,d} (R_n - G)}{\rho_a c_p}
\]
Relation of evaporative fraction to surface variables
(an example)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Estimation from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface temperature (K)</td>
<td>ATSR derivative</td>
</tr>
<tr>
<td>Surface albedo (-)</td>
<td>ATSR derivative</td>
</tr>
<tr>
<td>NDVI (-)</td>
<td>ATSR derivative</td>
</tr>
<tr>
<td>Fractional vegetation cover (-)</td>
<td>ATSR derivative</td>
</tr>
<tr>
<td>PBL Depth (m)</td>
<td>RACMO output</td>
</tr>
<tr>
<td>PBL pressure (Pa)</td>
<td>RACMO output</td>
</tr>
<tr>
<td>PBL potential temperature (K)</td>
<td>RACMO output</td>
</tr>
<tr>
<td>PBL specific humidity (%)</td>
<td>RACMO output</td>
</tr>
<tr>
<td>PBL wind speed (m/s)</td>
<td>RACMO output</td>
</tr>
</tbody>
</table>
Normalized temperature difference versus albedo
Normalized temperature difference versus albedo
Normalized temperature difference versus albedo
Comparison to Soil Moisture Measurements

Relative evaporation vs relative soil moisture

Time Series of Drought Severity Index
Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs)

www.hydrol-earth-syst-sci.net/15/2303/2011/

ESA Dragon programme
EU FP7 CEOP-AEGIS project

(Su et al., 2011, HESS)

www.hydrol-earth-syst-sci.net/15/2303/2011/
Preliminary validation results

Vol. soil moisture (5 cm) of Maqu stations and VUA-NASA AMSR-E

- Mean sm at Maqu site (depth of 5 cm)
- VUA-NASA sm from AMSR-E data

Organic soils
Sandy loam soil
Quantification of uncertainties in global products (Su, et al., 2011)

(Su et al., 2011, HESS)
Maqu SMST Network – validation results
Ngari SMST Network – validation results
How can we use this information for drought monitoring and prediction?
The WACMOS project

WACMOS is an ESA initiative to produce global products for the whole water cycle (Evapotranspiration, Soil Moisture, Clouds, Water Vapour). The project aims to set up a solid scientific basis for the creation of coherent long-term datasets of water relevant geo-information.
Continental scale simulations

1 Jan – 9 Dec 2009, grid resolution 25 KM

<table>
<thead>
<tr>
<th>Skin temperature</th>
<th>Precipitation (convective + non-convective)</th>
<th>Latent heat flux (Evaporation/transpiration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil moisture of top layer</td>
<td>Soil moisture of second layer</td>
<td></td>
</tr>
</tbody>
</table>
Climate change impacts and adaptation in River Basins

Figure 1. River basins refer to in the following graphs: (1) Namoco basin; (2) the Upper Yellow river basin; (3) the whole Yellow river basin (including the upper part (2)); (4) Yangtze river basin.
Example of the Yellow River Basin (upper basin vs whole basin)
Example of the Yellow River Basin (upper basin vs whole basin)

GLDAS_TWSC2 = P - ET - R (Anomaly)

TWSC3 = TRMM_PC – GLDAS_ETC – In-situ_RC (anomaly of total water storage change)
How shall we define droughts?

Dark blue is less than one standard deviation from the mean. For the **normal distribution**, this accounts for 68.27% of the set; while two standard deviations from the mean (medium and dark blue) account for 95.45%; and three standard deviations (light, medium, and dark blue) account for 99.73%. (vikipedia)
How shall we define droughts?

The probability that a normal deviate lies in the range $\mu - n\sigma$ and $\mu + n\sigma$ is,

$$F(\mu + n\sigma) - F(\mu - n\sigma) = \Phi(n) - \Phi(-n) = \text{erf}\left(\frac{n}{\sqrt{2}}\right),$$

<table>
<thead>
<tr>
<th>n</th>
<th>$F(\mu+n\sigma) - F(\mu - n\sigma)$</th>
<th>i.e. 1 minus …</th>
<th>or 1 in …</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.682 689 492 137</td>
<td>$\mu-1\sigma < F > \mu+1\sigma$</td>
<td>Near normal</td>
</tr>
<tr>
<td>2</td>
<td>0.954 499 736 104</td>
<td>$\mu-2\sigma < F <= \mu-1\sigma$</td>
<td>Moderately dry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\mu-3\sigma < F <= \mu-2\sigma$</td>
<td>Severely dry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$F <= \mu-3\sigma$</td>
<td>Extremely dry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\mu+1\sigma <= F < \mu+2\sigma$</td>
<td>Moderately wet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\mu+2\sigma <= F < \mu+3\sigma$</td>
<td>Severely wet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\mu+3\sigma <= F$</td>
<td>Extremely wet</td>
</tr>
</tbody>
</table>
GLDAS derived Standardized total water storage index – drought situation
A Roadmap From Process Understanding To Adaptation

Describe
- Trends (change)
- Variability (natural cycle)
- Outliers

Understand
- Attribution (variability vs. error)
- Consistency Process (e.g. Volcanic eruption, fire/aerosol)
- Feedback links (e.g. ENSO teleconnection)

Detect
- Hot Spot
- Quality issue
- Outside Envelope

Predict
- Impacts

Adapt
- Consequences
Impacts and projections in water resources

• Q1: What are observed impacts to water resources in Yangtze due to climate and human changes?

• Q2: Will the changes in the Yangtze River Basin influence the East Asian monsoon patterns?

• Q3: What will be the spatial/temporal distribution of water (sediment) resources in 21st century?
Yes, it is water availability!

