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IS the top
environmental
risk factor for

premature death

Getty



In 2011, 458000 premature
deaths in Europe were
attributed to particulate

matter in the air
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Static observation network

e AQMesh by Geotech Geotech

e \Wireless air qua“ty i ieessssssessssssssssennts ..

monitor AQM ESH

e Measures a variety of
pollutants: NO, NO,, O,, Bt
CO, SO,, PM,, PM, ., as : ~
well as temperature,
humidity, and pressure

e Compares reasonably well
with reference equipment
(but dependent on species)
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Point-based observations: The problem
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CITI-SENSE app: Android-based

mobile app for real-time AQ
monitoring
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Data fusion: Basic Premise
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Observations

Data fusion (as a subset of data

assimilation) creates a value-

added product by

a) Interpolating the observations
in an objective way

b) “correcting” the model
estimates with true
observations

DATA FUSION

Combined map
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Modelling results or other auxiliary
data

Data fusion method used here
provides a combined
concentration field by regressing
the observations against model
data and spatially interpolating the
residuals
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Data fusion for CITI-SENSE

A static basemap is created for
each location and each species
of interest to show the long-
term spatial patterns

This basemap is then modified
according to the observations
made by the static Geotech
Sensors

This is essentially a location-
dependent level-shift of the
basemap

The final result are hourly
maps with the current best
guess for the NO,/PM,,/PM, .
concentration field at all CITI-
SENSE locations

Schneider et al. (2015). Making sense of crowdsourced observations.

Static basemap
(for each species and location)
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Basemap:
Provides
information about
general spatial
patterns

Geotech
observations:
Provide
information about
current state of
atmosphere at a
few sampling
locations

Fused map:
Value-added
product providing
a best guess of
current state of
atmosphere for
the entire domain




Data fusion methodology

e Datafusionis a
subset of data
assimilation
techniques (Lahoz
and Schneider,
2014)

e Uses geostatistical
framework

e Analysis performed
entirely in log-space

e Universal kriging
approach

e Spatial interpolation
guided by proxy

e Explicit automated
modelling of spatial
autocorrelation
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Lahoz, W. A., and P. Schneider
(2014), Data assimilation: making
sense of Earth Observation, Front.
Environ. Sci., 2(16), 1-28,
doi:10.3389/fenvs.2014.00016.

Theoretical model of
spatial autocorrelation
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Modelling of the basemaps

e Can be nearly any spatially
exhaustive dataset that is
related to the observation

e Bestto use are urban-scale
dispersion models

e Alternatively concentration
map created through LUR
modelling

e We use the EPISODE model

— Three-dimensional,
combined
Eulerian/Lagrangian air
pollution dispersion model,
developed at NILU

— Combined modelling and
postprocessing approach
to obtain basemaps at 10-
100 m spatial resolution
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High-resolution map of NO, in Oslo from the
EPISODE dispersion model. These kind of maps
are ideally suited as a spatially distributed
auxiliary dataset.
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Original EPISODE gridded output
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Example basemaps for NO,

Oslo NO2
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A fusion example for Oslo

Oslo NO2: Truth
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Oslo NO2: Basemap and Observations
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Oslo NO2: Fused minus Model
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‘ 5 Leaflet{ Map tiles by Stémen Des_ign, CC BY 3.0 — Map data © OpenStreetiap

Typical example of a data fusion-based surface concentration field of NO, for Oslo, Norway, at 100 m spatial resolution.



NO2 [ug/m3]

40

30

20

10

Validation against “Truth”

Validation sites are randomly selected throughout the image. Concentration values at these
sites can be extracted from the truth, the basemap, and the fused result and compared.

Example 1: Basemap
overestimates “truth”
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Example 2: Basemap
underestimates “truth”
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This shows that the method can predict the true concentration field quite well even in
areas where no observations are available.
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Data fusion of mobile measurements
of Black Carbon
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Applications for Sentinel-5P

Mean 2011 surface nitrogen dioxide, Oslo, Norway with S5P 7 km x 7 km grid
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atmospheric composition

T
&10000

T
=

High-resolution urban air
guality maps based on the
combination of
crowdsourced
observations and model
data provides sub-pixel
information for Sentinel-5P

Could be used for:

« Validation/verification of
S5P data (e.g. NO,)
 Downscaling of the S5P

products to higher
spatial resolution using
the fused map as proxy
for spatial patterns
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Conclusions

e We developed a technique for merging point-based crowdsourced observations of air quality
with model information

— Geostatistics-based: Builds upon decades of experience; best linear unbiased estimator; provides
uncertainty estimates

— Fully automated implementation: Can be run operationally in real time with large datasets

e Provides a much more realistic estimate of true concentration field than observations or
model data alone

e Realistic high-resolution near real-time concentration fields in urban areas for the first time
allow for personalized air quality information
—  “How much particulate matter will | breathe in if | ride my bike from home to work right now?”
“What route to work is the least polluted/healthiest?”
e Infuture, the resulting up-to-date concentration fields could be used for validation and/or
downscaling of Sentinel-5P products

e Not just for air quality: Methodology is useful for most crowdsourcing applications where
point observations need to be combined with model data (or other auxiliary information)

e Afirst step towards making sense of highly distributed observations in the age of
crowdsourcing, Citizen Science, ubiquitous sensing, and Big Data

Schneider et al. (2015). Making sense of crowdsourced observations. ESA eo open science 2.0, 13 October 2015, Frascati, Italy
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Thank you for your attention!

Contact: Philipp Schneider

Email: ps@nilu.no
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e Collaborative Project
funded by FP7-ENV-2012

e 28 project partners from
12 countries (Europe,
South Korea, and
Australia)

e  Objective: Development of
sensor-based Citizen’s
Observatories for
improving urban quality
and for empowering
citizens to
- Contribute to and
participate in
environmental
governance

- Support and influence
community and policy
priorities and associated
decision making

- Contribute to the Global
Earth Observation
System of Systems
(GEQSS)

The CITI-SENSE project

Partners:
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IC’TI-SENSE is a four year Collaborative Project partly funded by the EU FP7-ENV-2012 under grant agreement 308524, started in October 2012.

Citizens’ Observatories
Urban Quality Fublic Spaces School indoor Quality

Participation and Empowerment
Information Products and Services

Data and Services Platform
Sensors Infrastucture

Standards for Geospatial Data and Services
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Observations

e There are many aspects to =
CITI-SENSE
— Air quality observations

using static and mobile
sensor nodes

— Indoor environment in
schools

— Public Spaces

e Here we focuson a
network of static sensor
nodes for air quality that
are being deployed in
various cities throughout
Europe

— Measuring the major air
pollutants

— Mounted at stakeholder’s
premises

Schneider et al. (2015). Making sense of crowdsourced observations. ESA eo open science 2.0, 13 October 2015, Frascati, Italy



Towards personal exposure estimates

e There are two alternative ways
for accomplishing personalized
exposure/dose estimates

— Approach 1: Direct use of
sensors
People move through the urban
environment with portable
sensors measuring
concentrations

— Approach 2: Indirect use of
sensors
Sensor data is used with model
info and data fusion techniques
to provide up-to-date air quality
maps for the city -> these maps
are then used to estimate
exposure along a given track

Schneider et al. (2015). Making sense of crowdsourced observations. ESA eo open science 2.0, 13 October 2015, Frascati, Italy



Sensor-based exposure and dose

Route
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Heart rate -> Dose

PM10 Concentrations ug/m3 Heart rate

bpm

If we know the subject’s
hear rate we can compute
the inhalation rate
(ventilation) and the
inhaled dose

Inhaled dose = Concentration x Ventilation x Duration

-
= @ @ o
=] o o =]

Minute ventilation (I/min)
[
(=]

Total PM,, dose:
36.5 ug

PM10 Dose [ug]

40
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Heart rate can either be

1.

Measured by a heart
rate monitor (mostly
Approach 1)

Derived from
accelerometer data
(Approach 1+2)
Estimated by activity
(mostly Approach 2)
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