

Crowdsourcing for observations from satellites

Dr Stuart Wrigley Research Fellow Department of Computer Science The University of Sheffield, UK

In collaboration with the Crowd4Sat consortium www.crowd4sat.eu

s.wrigley@sheffield.ac.uk @stuwrigley

@crowd4sat

INTRODUCTION

Crowd4Sat overview

- European Space Agency funded €170,000 over 14 months
- Explore new ways and methodologies to use CS
 - space data validation
 - space data exploitation
- Demonstrate value of CS for science, applications, education and citizen engagement
 - 4 use cases demonstration projects
 - targeting key scientific issues across space domains
- Develop strategy for better exploitation of CS
 - ESA data exploitation
 - educational activities.

- 2 partners in satellite observation
 - Starlab
 - e-GEOS
- 1 partner in crowdsourcing
 - University of Sheffield
- 2 real world users of EO and OS data who can benefit from crowdsourced data validation
 - The Floow
 - Alto Adriatico Water Authority
- 1 international technology advisor / provider
 - AizoOn

WORK AREAS

Area 1: Analysis and planning

- Analysis of:
 - existing crowdsourcing projects
 - wider crowdsourcing and citizen science communities
- Roadmap detailing:
 - challenges and needs raised by crowdsourcing and citizen science initiatives
 - technological and community trends
 - ways to capitalise on such opportunities for ESA and the wider industry

Area 2: four case studies

- Explore opportunities for crowdsourcing and OS:
 - methods and technologies for the validation, integration and enhancement of OS products and services using both opportunistically and participatory crowdsourced data
 - methods for the validation of quality, reliability and usability of crowdsourced data for OS products and application;
 - citizen engagement with ESA activities
- Each case study will have
 - differing types of crowdsourcing
 - domain of application
 - type of OS products and data

DEMONSTRATION PROJECTS

- Snow Covered Area (SCA) estimation valuable
 - Accessibility and safety of transport routes and settlements
 - Leisure activities (skiing, hiking, etc.)
 - Avalanche prediction, etc.
 - Snow melt is key parameter for
 - management of water resources
 - runoff modelling
- Sentinel-1A will improve SCA accuracy and revisit time but...
 - Mountainous terrains remain problematic: slant-range distortion effects
 - foreshortening, layover, shadowing

DP1: Snow coverage

Crowdsourcing snow coverage in the Spanish Pyrenees

- Collaboration with
 - citizens
 - citizen associations (hikers)
 - professionals (e.g., civil protection and park rangers)
- Facilitates
 - validation and integration of data and models from satellite (Sentinel-1 and MODIS)
 - increase their precision and coverage
 - identification of safe routes for hikers

DP1: Snow coverage

- OS data
 - Starlab already have a commercial SCA processing chain using
 - ENVISAT
 - RADARSAT
 - MODIS
 - (Sentinel-1)
- Crowdsourced data (participatory)

Mobile app

- Snow / no-snow classification
- Textual description
- Photograph (optional)
- GPS location and orientation
- iOS and Android (platform independence via Cordova / Adobe PhoneGap
- Anonymous

DP2: Traffic and pollution

- Vehicles are the source of 50% emissions and 90% of the health impacts within the atmosphere.
 - satellites only sees the full 'column' (c.f., atmospheric inversions)
- CS data (via telematics) can augment OS data to improve:
 - pollution / emissions / exposure models
 - pollution mapping
 - traffic management and city planning

DP2: Traffic and pollution

- Location
 - 3 regions of Sheffield, UK
 - Availability of high precision ground truth emissions data (e.g., NO_x)
 - Highly engaged stakeholders
 - Sheffield City Council
 - Regional transport authority (SYPTE) & South Yorkshire Intelligent Transport Systems (SYITS)
 - Citizen lobbyists

DP2: Traffic and pollution

- OS data
 - CORINE Land Cover (CLC)
 - Digital Elevation Models (ASTER GDEMv2)
- Crowdsourced data (opportunistic)
 - Telematics data (second-by-second)
 - tens of thousands of vehicles in the UK
 - black box recorders
 - white box recorders
 - OBD-2 devices
 - smartphone apps
 - wearable computing devices
 - manufacturer-embedded telematics electronics
 - Anonymised
 - Removal of journey endpoints, demographics, personal data, unique personal IDs

DP2: Traffic and pollution

- Flooding is most recurrent natural disaster
 - causes significant damages and losses.
 - next 70 years will see doubling in:
 - number of people affected by flooding each year (to 0.5-0.8 million)
 - annual damages (increasing to €7.7-15 billion)
- OS data and imagery used for flood mapping
 - Request to acquisition can be 24 hours
 - too slow for rapidly changing situation
- CS can bridge the gap and augment OS-derived flood mapping

DP3: Flood emergency mapping

- Location
 - Somerset Levels / Bridgwater, UK
 - Historic flood event 10 February 2014
 - Heavy rain from end of January caused severe floods
 - Over 17,000 acres (6,900 ha) of agricultural land under water for many weeks
 - Highly engaged stakeholders
 - Local authority emergency planners
 - Local citizens

DP3: Flood emergency mapping

- OS data
 - Sentinel-1 SAR
 - Landsat-8 Optical
 - MODIS
 - COSMO-SkyMed
- Non-EO data
 - OpenStreetMap, Wikimapia, Geonames, Copernicus Land Service
- Crowdsourced data (opportunistic)
 - Photographs from social media
 - Panoramio, Twitter, YouTube, Instagram, Flickr, etc.
 - geotagged / POI / place names
 - Anonymised
 - Removal of personal data, unique personal IDs

Tracking Real Time Intelligence in Data Streams

- Land use is key parameter in the management of water resources and the wider environment.
- Land cover and land cover change needed by decision-makers in the implementation of
 - Water Management plans (2000/60/EC)
 - Flood Risk Management plans (2007/60/EC)
- CORINE Land Cover (CLC) main resource
 - 44 different classes
 - refreshed every 5 years
 - 2 year delay between image acquisition and derived results
- CS data can improve accuracy and timeliness of the land cover information
 - improvement of models

DP4: Land use

- Location
 - high plain area of Bacchiglione river network draining to Vicenza and Padua
 - supports industrial, commercial and agricultural activities
 - intensively used for settlement, production systems and infrastructure.
 - increasing demand for land uptake.
 - Engaged stakeholders
 - Alto Adriatico Water Authority (AAWA)
 - Padua Local Authority
 - Vicenza Local Authority
 - Veneto Region Civil Protection

Phone Gap

- OS data
 - CORINE Land Cover (CLC)
- Crowdsourced data
 - Mobile app (participatory)
 - Land use classification using CLC categories
 - Textual description
 - Photograph (optional)
 - GPS location and orientation
 - iOS and Android (platform independence via Cordova / Adobe PhoneGap
 - Anonymous
 - Social Media (opportunistic)
 - Panoramia images
 - Anonymised
 - Removal of personal data, unique personal IDs

Conclusions

- Surveying of related CS projects and initiatives
 - Related to both OS and non-OS applications
- Roadmapping for increased CS adoption within ESA
- Hands-on investigation into use of CS to validate and enhance OS products and services
 - Supporting technologies and infrastructure almost complete
 - Moving into formal execution and evaluation phase
- Case Study executions start this month
 - Keep in touch to find out more about our findings over the coming months!

Questions

Dr Stuart Wrigley Research Fellow Department of Computer Science The University of Sheffield, UK

In collaboration with the Crowd4Sat consortium www.crowd4sat.eu

s.wrigley@sheffield.ac.uk @stuwrigley

@crowd4sat