Earth Observation and the Web of Data - how can we join the dots?

Jon Blower
University of Reading

EO Science 2.0
ESA ESRIN, Frascati
Introduction

• The Web is a huge VRE that we take for granted
 – Decentralised publishing
 – Low barrier to entry for users and publishers
 – Papers, people, data, code ...
 – But little structure or machine readability
 – Organised chaos!

• Geospatial standards and EO infrastructures don’t use the Web to best advantage

• How do we make better use of the Web in the EO community? What could we gain?
THE ESA CLIMATE CHANGE INITIATIVE
Satellite Data Records for Essential Climate Variables
The Web is the “Web of Documents”
“If ... the Web made all the online documents look like one huge book, [Linked Data] will make all the data in the world look like one huge database.”
Linked Data principles

• Give things unique and persistent identifiers
 – Datasets, sensors, algorithms, publications, variables ...

• Allow the identifier to be “looked up” on the web
 – i.e. the identifier should be an HTTP URL
 – e.g. http://dbpedia.org/resource/Frascati

• Provide a description of the thing in a standard format
 – Human readable (HTML)
 – Machine readable (RDF), using agreed vocabularies

• Use this description to link to other related things
 – And say why they are linked
Linked Data techniques build the “Web of Data”
Linked Data standards (community-independent)

- Data encoded in RDF **structure**
 - Resource Description Format

- **Semantics** encoded using agreed **vocabularies** of defined terms

- Data **querying** in SPARQL
 - RDF Query Language
 - cf. SQL

- Data can be **stored** in many ways
 - Native RDF stores ("triplestores")
 - Relational databases
 - ...
Linked Open Data Cloud (lod-cloud.net)
Search for “The Martian”, Google shows:

- Facts about the film
- Cast
- Showtimes
- Reviews
- Related films

This is Linked Data in action!

(powered by schema.org vocabulary)

Why can’t we do the same for EO data?
What can we do with Linked Data?

- Linking between datasets, instruments, algorithms
- Describing data more accurately (common vocabularies)
- Recording dataset provenance
- Combining data from different sources
Database of Dutch buildings (Geonovum)

http://almere.pilod.nl/bgtld/v2

Data pulled in at runtime from many sources via SPARQL queries

(Tax, companies, separations)

(thanks to Linda van den Brink)
Soil moisture observations

Terradue Virtual Machine

PostgreSQL – PostGIS Database

Strabon
Spatiotemporal RDF Store
SPARQL Endpoint

SPARQL Query
RDF returned

Sextant
web-based “mash-up” system for linked geospatial data

Other SPARQL Endpoints
- DBPedia
- INSPIRE GEOSS GMES
- UK Ordnance Survey
- etc.

KML
GeoJSON
GeoTIFF

Raster / Vector layers

Visual display in browser

Google Earth
Further analysis

KML
What can we do with Linked Data?

- Linking between datasets, instruments, algorithms
- Describing data more accurately (common vocabularies)
- Recording dataset provenance
- Dynamically combining data from different sources
- User feedback and annotation
User feedback on data using CHARMe

- http://www.charme.org.uk
“CHARMe Maps” tool

Allows creation and discovery of commentary about specific parts of datasets.
What can we do with Linked Data?

• Linking between datasets, instruments, algorithms
• Describing data more accurately (common vocabularies)
• Recording dataset provenance
• Dynamically combining data from different sources
• User feedback and annotation
• Generating custom data products
Enhancing land use change products

Part of previous processing chain replaced by Linked Data queries using SPARQL
- increased flexibility
- enables rapid experimentation and development
What can we do with Linked Data?

- Linking between datasets, instruments, algorithms
- Describing data more accurately (common vocabularies)
- Recording dataset provenance
- Dynamically combining data from different sources
- User feedback and annotation
- Generating custom data products
- **Enabling data discovery**
 - Follow-your-nose
 - mass-market search engines (Google screenshot)
Google knows what a Dataset is!

(again, uses schema.org vocab)
(Some of many) challenges

• Finding suitable vocabularies
 – Don’t invent your own unless you have to!

• Handling geospatial data
Geospatial Linked Data tools

- **Strabon**
 - spatiotemporal RDF store
 - GeoSPARQL / stSPARQL support

- **GeoTriples**
 - Convert geospatial data to RDF

- **Ontop-spatial**
 - “Wrap” existing geo-databases

- **SILK**
 - Discover links in datasets
(Some of many) challenges

• Finding suitable vocabularies
 – Don’t invent your own unless you have to!
• Handling geospatial data
• **Handling big data** (data cubes)
 – Bridging between RDF and multidimensional arrays
 – (JSON-LD quite a good compromise format)
Interactive, in-browser mapping between land cover categories

Uses JSON-LD representation of EO data and semantic metadata
Conclusions

• Linked Data makes information **part of the web, not just on the web**
• Retains decentralised publication
 • “Small pieces, loosely coupled”
 • You don’t have to own everything!
• Rapidly maturing area, entering mainstream
• Breaks out of community-specific silos and architectures

• Good first actions:
 • Generate unique, persistent and resolvable identifiers for your “things”
 • Look for projects and systems that provide these identifiers already
 • Use microformats to embed semantic information in your website
Thank you!

j.d.blower@reading.ac.uk
@Jon_Blower

http://melodiesproject.eu
@MelodiesProject