

→ POLINSAR 2015

PRECIPITATING CLOUD EFFECTS ON THE RADAR POLARIMETRIC SIGNATURE AT KA BAND

S. Mori^{1,2}, F.S. Marzano^{1,2}, N. Pierdicca¹ F. Polverari^{1,2}, L. Mereu^{1,2}, and B. Rommen³

¹Dept. Inf. Eng., Electronics and Telecom., Sapienza University of Rome, Italy ²CETEMPS, University of L'Aquila, L'Aquila, Italy ³ESA-ESTEC, Nordwjick, The Netherland

WHY CLOUDS DEALING WITH SAR?

POTENTIAL of X/Ku/Ka-band SAR for RAIN retrieval

- At higher frequency precipitating clouds may produce significant attenuation/scattering/depolarization effects
- The high spatial resolution of SAR sensors might provide new insights into the **structure of precipitating clouds** from space.
- Large availability of a new generation of X-SAR satellites near fully polarimetric

Atmospheric artifacts on high frequency radar imaging

- Rainfall signatures have been already revealed by previous X-SARs measurements (e.g. SAR-X SIR-C in 1994)
- It can affect the interpretation of SAR data at X and higher frequencies,
 modifying the polarimetric signature of the ground
- Assessing these effect can support to the design and performance assessment of future high frequency radar (e.g., Ka band interferometer, ESA funded project N. 4000109477/13/nl/lvh)

Outline

- Introduction
 - Context and examples
- Modeling of SAR observations due to precipitation
 - SAR response model
 - Polarimetric SAR observables
 - High-resolution polarimetric simulated scenarios
- Polarimetric signature of precipitation
 - Sensitivity analysis
 - Polarimetric frequency diversity
- Parametric estimation of precipitation from X-SAR
 - Case study
- Conclusions

SAR cloud response and observables

Plane-wave incidence (avoid spherical wave front corrections)

SAR polarimetric observables

$$\sigma^{\circ}_{SAR}(x) = \sigma^{\circ}_{SRF}(x) + \sigma^{\circ}_{VOL}(x)$$

$$Z_{SARco}(x) = \frac{\sigma_{SARhh}^{0}(x)}{\sigma_{SARvv}^{0}(x)}$$

$$\rho_{SARco}(x) = \frac{\langle S_{SARhh}(x)S_{SARvv}^{*}(x) \rangle}{\sqrt{\langle \left|S_{SARhh}(x)\right|^{2} \rangle \sqrt{\langle \left|S_{SARvv}(x)\right|^{2} \rangle}}}$$

$$= |\rho_{SARco}(x)| e^{j\Psi_{SARco}(x)}$$

- σ⁰_{SARpq}: pq-polarized normalized radar cross section (NRCS)
- Z_{SARco}: co-polar ratio
- ρ_{SARco} : complex correlation coefficient

Modelling SAR response: NRCS

For a given pixel (x,y) the SAR NRCS can be formally expressed as follows:

$$\sigma_{SARpq}^{0}(x, y) = \sigma_{SRFpq}^{0}(x, y) + \sigma_{VOLpq}^{0}(x, y)$$

- σ⁰_{SRFpq}(x,y): surface backscatter, attenuated by the two-way path through the precipitating atmosphere
- σ⁰_{VOLpq}(x,y): volume backscattering due to hydrometeor reflectivity, weighted by the two-way path through precipitating atmosphere

$$\sigma_{SRFpq}^{0}(x,y) = \sigma_{pq}^{ground}(x,y) \exp\left(-\int_{\Delta l(x,y)} k_{pp}(l) dl - \int_{\Delta l(x,y)} k_{qq}(l) dl\right)$$

$$\sigma_{VOLpq}^{0}(x,y) = \int_{\Delta t(x,y)} \eta_{pq}(t) \exp\left(-\int_{\Delta l(x,y)} k_{pp}(l) dl - \int_{\Delta l(x,y)} k_{qq}(l) dl\right) dt$$

- σ^{ground}_{pq}: surface target NRCS
- η_{pq} , k_{pq} : hydrometeors reflectivity and specific attenuation

$$\begin{split} &\eta_{pq} = 4\pi < \left| S_{pq} \right|^2 > = \int_0^\infty \int_0^{\pi/2} 8\pi^2 \left| S_{pq}(D, \phi) \right|^2 N(D) \, p(\phi) dD \sin \phi d\phi \\ &k_{pq} = -2\lambda < \text{Im} \left(F_{pq} \right) > \end{split}$$

- S_{pq}, F_{pq}: element of the complex back or forward hydrometeor scattering matrix
- N(D): particle size distribution
- p(φ): particle orientation probability density function
- λ: wavelength

Modelling SAR response: Correlation Coeff.

 For a ground point (x,y) the observable SAR complex correlation coefficient is given by:

$$\sqrt{\sigma^{0}_{hh}} \sqrt{\sigma^{0}_{vv}} \rho_{co}^{ground} e^{-\int k_{hh}(l)dl - \int k_{vv}(l)dl} e^{j2\Phi_{co}(x)} + sen\theta \int_{\Delta t(x)} C_{VOL}(t)dt$$

$$\rho_{SARco} = - \sqrt{\sigma^{0}_{SARhh}} \sqrt{\sigma^{0}_{SARvv}}$$

$$\Psi_{SARco}(x, y) = \arg \{\rho_{SARco}(x, y)\}$$

$$C_{VOL}(t) = \sqrt{\eta(t)_{vv}} \sqrt{\eta(t)_{hh}} \rho_{co}^{vol}(t) \exp \left(-\int_{\Delta l(t)} k_{vv}(l)dl\right) \exp \left(-\int_{\Delta l(t)} k_{hh}(l)dl\right) e^{j2\Phi_{co}(t)}$$

$$\rho_{co} = |\rho_{co}| e^{j\delta_{co}}$$

$$\delta_{co} = \delta_{vv} - \delta_{hh} = \arg(\rho_{co})$$

$$K_{co} = \lambda < \operatorname{Re}(F_{hh} - F_{vv}) > \Phi_{co} = \int_{\Delta l(t)} K_{co}(l)dl$$

- ho_{SARco} , ho_{co}^{ground} , ho_{co}^{vol} : complex correlation coefficients of observed resolution cell, surface target and volume bin
- δ_{co} : backscatter differential phase
- S_{pq} , F_{pq} : elements of the hydrometeros complex back or forward scattering matrix
- η_{pq} : hydrometeor reflectivity
- K_{co} : hydrometeor copolar specific differential phase

Hydrometeor e.m. parameterization

Hydrometeors polarimetric parameters can be modelled as function of water content by mean of power laws:

$$\begin{split} Z_{epq}(x,y,z) &= \frac{\lambda^4}{\pi^5 |K|^2} \eta_{pq}(x,y,z) = a_{Zpq} W(x,y,z)^{b_{Zpq}} \\ k_{pq}(x,y,z) &= a_{kpq} W(x,y,z)^{b_{kpq}} \\ K_{co}(x,y,z) &= a_{Kco} W(x,y,z)^{b_{Kco}} \\ |\rho_{co}|(x,y,z) &= a_{\rho co} W(x,y,z)^{b_{\rho co}} \\ \delta_{co}(x,y,z) &= a_{\delta co} W(x,y,z)^{b_{\delta co}} \end{split}$$

- W = water content [g/m³]
- K_{co}= differential phase. [°/km]
- k_{pq} = specific attenuation [dB/km]
- Z
 _{epq} = equivalent reflectivity [mm⁶/m³]
- $|\rho_{co}|$ = mod. of the copolar corr. Coefficient
- δ_{co} = arg. of the copolar corr. coefficient
- λ= wavelength [cm]
- $|K|^2 = 0.93$ for water and 0.19 for ice

 $a_{\chi pq}$, $b_{\chi pq}$ coefficients have been obtained by using **HESS T-Matrix radar scattering model**, as described in [Marzano et al., 2007] and [Marzano et al., 2010].

Simulation case studies

- The proposed SAR response model requires as <u>input</u> a
 - cloud structure (2D geometry, hydrometeor types, hydrometeor water content distribution, hydrometeor e.m. response parameterization) and
 - the polarimetric characterization of the ground target

- The ground target polarimetric covariance matrix can be given by:
 - Models (e.g., bare soil polarimetric response by [Oh et al., 2002]
 - Polarimetric signature of **canonical targets** (i.e., spheres with $ρ_{co}^{ground}=1$, dihedrals with $ρ_{co}^{ground}=-1$, others
- The cloud structure (i.e., hydrometeors distributions) can be derived by
 - ad-hoc synthetic distributions, with simplified shape (e.g. parallelepiped), to assess main effects in a simple environment.
 - Realistic fields simulated by a 3-D high-resolution mesoscale cloud-resolving models (CRMs)

Outline

- Introduction
 - Context and examples
- Modeling of SAR observations due to precipitation
 - SAR response model
 - Polarimetric SAR observables
 - High-resolution polarimetric scenarios simulation
- Polarimetric signature of precipitation
 - Sensitivity analysis
 - Polarimetric frequency diversity
- Parametric estimation of precipitation from X-SAR
 - Case study
- Conclusions

Synthetic cloud 1: Rectangular cumulonimbus esa

- Parallelepiped structure
- Horizontal uniform 10 km wide hydrometeor density
- 2 vertical layers: raindrops 0.3 g/m³ and snoflakes 0.5 g/m³ water content, with 15 km overall height
- E. M. parameters from HESS T-Matrix model [Marzano et al., 2007]

Homogenous background from bare soil model [Oh et al., 2002]: Rms Height (k_s) 1.5 cm, Correlation Lenght (k_l) 5.0 cm, Volumetric soil moisture content (m_v) 0.25 [cm³ /cm³]

Zero °C @4.9 km

 $\sigma^{ground} \simeq -6 dB$

f = 35 GHz

• θ =40 deg

Case 2: Stratiform cloud with and without ice

High-resolution realistic clouds

- The simulated hydrometeors distributions can be derived by simulated field through 3-D high-resolution mesoscale cloud-resolving models (CRMs)
- The System for Atmospheric Modeling (SAM) CRM [Blossey et al., 2007] allows at simulating the distribution of Cloud, Rain, Ice, Snow, Graupel particles at 250 m resolution

Examples of horizontal and vertical distribution of densities of different hydrometeors predicted by model at a given epoch

Case 3. Realistic spread thin cloud

Dihedrals - NRCS c.a. -6dB

Dependence on frequency

Both negative and positive peaks of NRCS increase with frequency

- Ka-band NCRS appears more sensitive to attenuation and less to reflectivity
- X and Ku bands show a comparable dynamic range

Presence of dissimilar behavior

Peak shifting, peak present only in one or two frequencies

• Z_{SARco} similar to NRCS

- Small positive values (presence of spherically-shaped frozen hydrometeors)
- Large negative peaks (presence of intense precipitation with oblate raindrops)
- Ka-band quite dissimilar from X and Ku ones

Simulates NRCS image at X/Ku/Ka bands

- Ground plane σ^0_{SARhh} for X, Ku and Ka band, *hh* polarization plus the total vertically-integrated columnar content (VIWC).
- The ground response has been considered as constant (about -7 dB at X-band), and so the incident angle (40°).
- The images of the storm are simulated in ground range (the x-y plane), 5 km width, spread all the cross range dimension (64 km).

Outline

- Introduction
 - Context and examples
- Modeling of SAR observations due to precipitation
 - SAR response model
 - Polarimetric SAR observables
 - High-resolution polarimetric scenarios simulation
- Polarimetric signature of precipitation
 - Sensitivity analysis
 - Polarimetric frequency diversity
- Parametric estimation of precipitation from X-SAR
 - Case study
- Conclusions

X-SAR retrievals: Hurricane "GUSTAV" case

South eastern Louisiana around 30.5° N x 89.5° W

September 2, 2008 at 12:00 UTC

TerraSAR-X: HH pol data

NEXRAD: S-band reflectivity PPI at 0.86 deg KMOB site

X-SAR retrievals: Hurricane "GUSTAV" case

Correlation between NRCS values σ_{SAR} against co-located and co-registered NEXRAD WR reflectivity Z, for the selected region of interest (ROI)

X-SAR retrievals: Hurricane "GUSTAV" case

Precipitation rate [mm/h]

Ground Weather Radar

Spaceborne X-SAR

•Corr = 0.75 •Bias = -0.66 mm/h •RMSE = 22.28 mm/h •FRMSE = 0.98

Conclusions

- A 2D/3D simulator of the polarimetric response of a SAR in presence of precipitating clouds has been developed
- Considering simple synthetic clouds as well as realistic clouds predicted by a mesoscale model we found that:
- Bad news
 - The impact of clouds or and especially Ka band SAR can be significant, even for clouds with relatively high occurrence
 - The polarimetric signature of the glound larget can be significantly modified or even completely masked
- Good news
 - Both copolar ratio and differential phase exhibit a good with columnar contents.
 - SAR remote sensing of clouds has spatial resolution useful for water budget, water management and hydrological model initialization
- Acknowledgments
 - This work has been partially funded by:
 - ESA/ESTEC contract N. 4000109477/13/nl/lvh) "Ka-Band SAR Backscatter Analysis in Support of Future Applications"
 - European Union project Earth2Observe "Global Earth Observation for Integrated Water Resource Assessment" (http://www.earth2observe.eu)

Weinman and Marzano, JAMC, 2008 Marzano and Weinman, TGRS, 2008 Marzano et al., TGRS, 2010 Marzano et al., HESS, 2011 Marzano et al., TGRS, 2012 Pulvirenti et al., TGRS 2014