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WHY CLOUDS DEALING WITH SAR ? 

• POTENTIAL of X/Ku/Ka-band SAR for RAIN retrieval 
• At higher frequency precipitating clouds may produce significant 

attenuation/scattering/depolarization effects 
• The high spatial resolution of SAR sensors might provide new insights into the 

structure of precipitating clouds from space. 
• Large availability of a new generation of X-SAR satellites near fully 

polarimetric 
 

• Atmospheric artifacts on high frequency radar imaging 
– Rainfall signatures have been already revealed by previous X-SARs 

measurements (e.g. SAR-X SIR-C in 1994)  
– It can affect the interpretation of SAR data at X and higher frequencies, 

modifying the polarimetric signature of the ground 
– Assessing these effect can support to the design and performance assessment 

of future high frequency radar (e.g., Ka band interferometer, ESA funded 
project  N. 4000109477/13/nl/lvh) 
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SAR cloud response and observables 
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• σ0
SARpq: pq-polarized normalized radar 

cross section (NRCS)  

• ZSARco: co-polar ratio 

• ρSARco: complex correlation coefficient 

Radar swath 



Modelling SAR response: NRCS 
• For a given pixel (x,y) the SAR NRCS can be formally expressed as follows: 

( ) ( ) ( )yxyxyx VOLpqSRFpqSARpq ,,, 000 σσσ +=

• σ0
SRFpq(x,y): surface backscatter, attenuated by the two-way path 

through the precipitating atmosphere 

• σ0
VOLpq(x,y): volume backscattering due to hydrometeor reflectivity, 

weighted by the two-way path through precipitating atmosphere 
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• σground
pq: surface target NRCS 

• ηpq, kpq::   hydrometeors reflectivity and specific attenuation 

• Spq, Fpq : element of the complex back or forward hydrometeor scattering 
matrix 

• N(D):  particle size distribution 
• p(φ):   particle orientation probability density function 
• λ:       wavelength 
 



Modelling SAR response: Correlation Coeff. 
• For a ground point (x,y) the observable SAR 

complex correlation coefficient is given by: 
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• ρSARco, ρco
ground, ρco

vol
 : complex correlation coefficients 

 of observed resolution cell, surface target and  volume 
bin 

• δco :  backscatter differential phase  
• Spq, Fpq : elements of the hydrometeros complex back or 

 forward scattering matrix 
• ηpq:  hydrometeor reflectivity 
• Kco:  hydrometeor copolar specific differential phase 



Hydrometeor e.m. parameterization 
Hydrometeors polarimetric parameters can be modelled as 
function of water content by mean of power laws: 

 
 

 
 

 
 

• W = water content [g/m3] 
• Kco= differential phase. [°/km] 
• kpq = specific attenuation [dB/km]  
• Zepq = equivalent reflectivity [mm6/m3] 
• |ρco | = mod. of the copolar corr. Coefficient 
• δco= arg. of the copolar corr. coefficient 
• λ= wavelength [cm] 
• |K|2 = 0.93 for water and 0.19 for ice 

aXpq, bXpq coefficients have been obtained by 
using HESS T-Matrix radar scattering 
model, as described in [Marzano et al., 
2007] and [Marzano et al., 2010]. 
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Simulation case studies 

• The proposed SAR response model requires as input a  
– cloud structure (2D geometry, hydrometeor types, hydrometeor water 

content distribution, hydrometeor e.m. response parameterization) and  
– the polarimetric characterization of the ground target 

 

• The ground  target polarimetric covariance matrix can be given by: 
– Models (e.g., bare soil polarimetric response by [Oh et al., 2002] 
– Polarimetric signature of canonical targets (i.e., spheres  with ρco

ground=1, 
dihedrals with ρco

ground=-1, others 
• The cloud structure (i.e., hydrometeors distributions) can be derived by  

– ad-hoc synthetic distributions, with simplified shape (e.g. parallelepiped), to 
assess main effects in a simple environment.  

– Realistic fields simulated by a 3-D high-resolution mesoscale cloud-resolving 
models (CRMs)  
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Synthetic cloud 1: Rectangular cumulonimbus 
• Parallelepiped structure 
• Horizontal uniform 10 km wide hydrometeor density 
• 2 vertical layers: raindrops 0.3 g/m3 and snoflakes 0.5 g/m3 water content, with 15 km overall height 
• E. M. parameters from HESS T-Matrix  model [Marzano et al., 2007] 
• Homogenous background from bare soil model [Oh et al., 2002]: Rms Height (ks) 1.5 cm, Correlation Lenght (kl) 

5.0 cm, Volumetric soil moisture content (mv) 0.25 [cm3 /cm3] 
 
 
 
 

• Zero °C @4.9 km 
• σground ≅ -6 dB 
• f = 35 GHz 
• θ=40 deg 



Case 2: Stratiform cloud with and without ice 

Dihedrals – NRCS c.a. -6dB 



High-resolution realistic clouds 
• The simulated hydrometeors distributions can be derived by simulated field through 3-D 

high-resolution mesoscale cloud-resolving models (CRMs) 
• The System for Atmospheric Modeling (SAM) CRM [Blossey et al., 2007] allows at 

simulating the distribution of Cloud, Rain, Ice, Snow, Graupel particles at 250 m resolution 
 

Examples of horizontal 
and vertical distribution of 

densities of different 
hydrometeors predicted 

by model at a given 
epoch 

 



Case 3. Realistic spread thin cloud 

Dihedrals – NRCS c.a. -6dB 
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Dependence on frequency 
• Both negative and positive peaks of NRCS increase with frequency 

– Ka-band NCRS appears more sensitive to attenuation and less to reflectivity 
– X and Ku bands show a comparable dynamic range 

• Presence of dissimilar behavior 
– Peak shifting, peak present only in one or two frequencies 

• ZSARco similar to NRCS 
– Small positive values (presence of spherically-shaped frozen hydrometeors) 
– Large negative peaks (presence of intense precipitation with oblate raindrops) 
– Ka-band quite dissimilar from X and Ku ones 



Simulates NRCS image at X/Ku/Ka bands 
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• Ground plane σ0
SARhh for X, 

Ku and Ka band, hh 
polarization plus the total 
vertically-integrated columnar 
content (VIWC).  

• The ground response has been 
considered as constant (about 
-7 dB at X-band), and so the 
incident angle (40°).  

• The images of the storm are 
simulated in ground range (the 
x-y plane), 5 km width, spread 
all the cross range dimension 
(64 km).  
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X-SAR retrievals: Hurricane “GUSTAV” case 

• South eastern Louisiana around 30.5° N x 89.5° W 
• September 2, 2008 at 12:00 UTC  

TerraSAR-X:  
HH pol data 

NEXRAD:  
S-band reflectivity 
PPI at 0.86 deg  
KMOB site  
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X-SAR retrievals : Hurricane “GUSTAV” case 

Correlation between NRCS values σSAR against co-located and co-registered 
NEXRAD WR reflectivity Z, for the selected region of interest (ROI) 

Corresponding RR 



X-SAR retrievals: Hurricane “GUSTAV” case 

•Corr  = 0.75 

•Bias  = -0.66 mm/h 

•RMSE  = 22.28 mm/h 

•FRMSE  = 0.98 

Ground Weather Radar Spaceborne X-SAR 

Precipitation rate [mm/h] 



Conclusions 
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• A 2D/3D simulator of the polarimetric response of a SAR in presence of 
precipitating clouds has been developed 

• Considering simple synthetic clouds as well as realistic clouds predicted by a 
mesoscale model we found that: 

• Bad news 
– The impact of clouds on X and especially Ka band SAR can be significant, even for clouds 

with relatively high occurrence 
– The polarimetric signature of the ground target can be significantly modified or even 

completely masked  
• Good news  

– Both copolar ratio and differential phase exhibit a good correlation with columnar contents.  
– SAR remote sensing of clouds has spatial resolution useful for water budget, water 

management and hydrological model initialization  


	Slide Number 1
	WHY CLOUDS DEALING WITH SAR ?
	Outline		
	SAR cloud response and observables
	Modelling SAR response: NRCS
	Modelling SAR response: Correlation Coeff.
	Hydrometeor e.m. parameterization
	Simulation case studies
	Outline		
	Synthetic cloud 1: Rectangular cumulonimbus
	Case 2: Stratiform cloud with and without ice
	High-resolution realistic clouds
	Case 3. Realistic spread thin cloud
	Dependence on frequency
	Simulates NRCS image at X/Ku/Ka bands
	Outline		
	X-SAR retrievals: Hurricane “GUSTAV” case
	X-SAR retrievals : Hurricane “GUSTAV” case
	X-SAR retrievals: Hurricane “GUSTAV” case
	Conclusions

