Facing the scientific challenges of the BIOMASS mission

Shaun Quegan

University of Sheffield & NCEO

The effects of forest changes on climate

8.3±0.4 GtC/yr

 1.0 ± 0.5 GtC/yr net flux

Global Carbon Project, 2012

Biomass will map forest biomass, height and change with unprecedented accuracy

Forest biomass and forest height: global, 200 m scale, every 6 months for 4 years, 20% accuracy in biomass, 20-30% accuracy in height

Disturbances: global, at 50 m scale

Scientific challenge 1: environmental changes

Major recent ESA campaigns:

- 1. Kalimantan 2004 (Indrex)
- 2. Remningstorp 2007 (BioSAR 1), 2010 (BioSAR 3)
- 3. Krycklan 2008 (BioSAR 2)
- 4. F. Guiana 2009 (TropiSAR), 2011-13 (TropiScat)

Scientific challenge 1: environmental changes (2)

Inversion techniques must deal with data dispersion and differences between different types of forest.

Scientific challenge 1: environmental changes (3)

Remningstorp 70 MHz data: varying environmental conditions over 3 months

HV only

HV, HH & VV

HV, HH, VV & DEM

Blue - from airborne lidar map, std. error = 25 ton/ha Black - from 80 m x 80 m *in situ* plots, std. error = few %

Training on stratified subset of Krycklan data. Performance assessed on data from Remningstorp.

Scientific challenge 2: combining measurement modes

Challenge 2: combining measurement modes

Challenge 2: combining measurement modes

Scientific challenge 3: training and validation

Dinghushan, China Baotianman, China Nonggang, China Donglingshan, China Lilly Dickey Woods, IN, USA Xishuangbanna, China Wytham Woods, UK Changbaishan, China Wabikon Lake, WI, USA Mo Singto, Thailand Doi Inthanon, Thailand Haliburton Forest, Canada Wind River, WA, USA Harvard Forest, MA, USA Tiantongshan, China Yosemite, CA, USA Huai Kha Khaeng, T Gutianshan, China Santa Cruz, CA, USA SERC, MD, USA Fushan, Taiwan SCBI, VA, USA Lienhuachih, Taiwan Nanjenshan, Taiwan Hawaii, USA Luquillo, Puerto Rico Hong Kong, China Palanan, Philippines Panama Brunei Danum Valley, Malaysia Korup, Cameroon Sinharaja, Sri Lanka La Planada, Colombia Lambir, Malaysia Rabi, Gabon Pasoh, Malaysia Yasuni, Ecuador Ituri, Dem. Rep. Congo **Bukit Timah, Singapore** Wanang, PNG Amacayacu, Colombia Mpala, Kenya Manaus, Brazil Ilha do Cardoso, Brazil

In situ network led by Smithsonian, including Centre for Tropical Forest Science

Scientific challenge 3: training and validation (2)

Key message: Training inversion algorithms at 4 ha resolution (the Biomass estimation scale) with in situ data at smaller scales leads to an estimation bias.

Rejou-Mechain et al.(2014)

Scientific challenge 4: the physics of P-band scattering

Inversion techniques need to deal with data dispersion and differences between different types of forest.

Scientific challenge 4 (2)

Site	Intercept=a	Slope=q	R ²	p-value
Paracou	-3.3 ± 0.46	0.79 ± 0.17	0.46	< 0.001
La Selva	-2.8 ± 0.07	0.60 ± 0.03	0.92	< 0.001
Remningstorp, March 9th	-2.1 ± 0.08	0.47 ± 0.04	0.71	< 0.001
Remningstorp, April 2nd	-2.1 ± 0.07	0.44 ± 0.03	0.71	< 0.001
Remningstorp, May 2nd	-2.1 ± 0.07	0.42 ± 0.03	0.73	< 0.001
Landes	-3.4 ± 0.16	1.01 ± 0.03	0.88	< 0.001
Maine	-2.2 ± 0.08	0.41 ± 0.04	0.75	< 0.001

Power-law relationships between HV backscatter and biomass are found for all forests where we have data. What determines the exponent? Scientific challenge 5: getting BIOMASS data into carbon cycle estimates (& IPCC & REDD+)

AGU 2014: Informing carbon dynamics in the Community Land Model with observations from across timescales (Andy Fox [NEON] & Tim Hoar [NCAR])

Conclusions

- •Annual AGB biomass observations are a powerful constraint on many large C and N pools
- Annual Net Primary Production estimates are less helpful than we expected

Carbon flux depends on the disturbance regime

M = mean loss of biomassF = severity of disturbanceP = probability of disturbance

Summary

- 1. BIOMASS is the first P-band radar in space, the first space mission exploiting Pol-InSAR for global forest height mapping, and the first space radar tomographic mission.
- 2. The experimental data supporting BIOMASS is heavily undersampled in time and space.
- 3. 1 & 2 imply that
 - 1. We have to make as much use as possible of physical, modelling and statistical reasoning in preparing for BIOMASS
 - 2. In practice many aspects of using the data will only become clear after launch
- 4. The BIOMASS mission already has significant buy-in from the ecological and carbon science communities.
- 5. More needs to be done to make sure that BIOMASS meets the needs of its non-science users