

The Biomass Mission, status of the satellite system

M. Arcioni, P. Bensi, M. Fehringer, F. Fois, F. Heliere, **K. Scipal** PolInSAR/Biomass Meeting 2015, ESRIN 29/01/2015

- 1. Key facts (lifetime, duty cycle etc, launcher)
- 2. Data policy slide

Biomass products

height

Forest

Areas of forest clearing (hectare)

Above-ground biomass (tons/hectare)

Upper canopy height (meter)

• 200 m resolution

- 1 map every 6 months
- global coverage of forested areas
- accuracy of 20%, or 10 t ha⁻¹
 for biomass < 50 t ha⁻¹

• 200 m resolution	• 50 m resolution
• 1 map every 6 months	• 1 map every 6 months
global coverage of forested	global coverage of forested
areas	areas
accuracy of 20-30%	90% classification accuracy

Biomass will deliver 3 independent types of information

Key driver requirements

Cover high biomass forest Single Satellite Mission

- Low frequency **435MHz**
- Large swath (coverage), resolution, ambiguity
 Large antenna (11m-12m), low power
 (200-300W SAR peak power)

- Full polarimetric mode of operation
- Interferometry
- Good cross-polar isolation

Stripmap mode, satellite roll for beam repointing, polarisation precompensation technique for the feed

Radiometric stability, bias

Calibration (internal and external calibration)

BIOMASS Requirements

Parameter	Requirement
Instrument type	P-band full polarimetric SAR
Centre frequency	435 MHz (P-band)
Bandwidth	6 MHz (ITU allocation)
Incidence angle (near)	Threshold: 23°; Target: 25°
Cross-talk	≤ -30 dB
Spatial res. (≥ 6 looks)	≤ 60 m (across-track) x 50 m (along- track)
Noise equivalent $\sigma 0$	≤ –27 dB
Total ambiguity ratio	≤ -18 dB
Radiometric stability	0.5 dB RMS
Abs. radiometric bias	1.0 dB
Dynamic range	35 dB

Payload Functional Architecture

Payload Functional Architecture

Stripmap acquisition mode

- Single antenna beam
- Stripmap mode
- Satellite roll for beam repointing

System performance at Level 1B

Key Parameters	Requirement	Concepts A and B	
Sensitivity (NESZ)	≤ -27 dB	≤ -27 dB	V
Total Ambiguity Ratio	≤ -18 dB	≤ -18 dB	V
Geometric Resolution	≤ 60m x 50m	≤ 60m x 50m	V
Effective Number of Looks	≥ 6	≥ 6	V
Radiometric Stability	≤ 0.5 dB	≤ 0.35 dB	V
Absolute Radiometric Bias	≤ 1.0 dB	≤ 0.45 dB	V
Crosstalk	≤ -30 dB	≤ -30 dB	V
Dynamic Range	35 dB	35 dB	V

Calibration

Achievement of the radiometric performance requirements is ensured by:

- On-ground characterisation of the Biomass payload prior to launch
- Internal calibration to monitor the power level and gain of the radar electronics
- *External calibration* using transponders for the characterisation of the end-toend radar measurement chain

Transponder concept:

• Polarimetric with a single 4 m \times 4 m planar antenna (re-generative with time-delays), mechanical satellite tracking, receive function and polarisation agility

One transponders placed on the magnetic equator and one at higher latitudes

ESA UNCLASSIFIED - For Official Use

European Space Agency

Coverage Strategy (Interferometry phase) Coverage Strategy (Interferometry phase)

ESA UNCLASSIFIED – For Utticial Use

Across-track distance [km]

Reducing the repeat cycle time

Coverage

- 1. Acquisition mask restricted by US Space Objects Tracking Radar (SOTR)
- 2. Systematic Acquisitions
- 3. Acquisition in both ascending and descending passes
- 4. Two mission phases:
 - **TOM** Tomography with 7 acquisitions for a given location (1st year)
 - INT Interferometry with 3 acquisitions for a given location (2nd-5th year)

(Red = Primary objective coverage mask, Yellow = Secondary objective coverage mask)

Example: Biomass Exploitation Platform -> a very preliminary approach

Status Biomass Activities

- 1. ESA Earth Observation Program Board will decide on go ahead for Biomass in February 2015 based on overall technical and programmatic evaluation.
- 2. Industrial Activities
 - Two competitive Phase B1 System studies have been closed successfully in 2014 (with the Intermediate System Requirements Review). No major criticalities have been identified.
 - b. Invitation to Tender for Phase-B2 currently prepared. Plan to go out at the end of Q1 2015. Implementation phase B2/C/D expected to start in Q3 2015
- 3. Science Activities
 - a. L2-Retrieval Precursor activity currently running
 - b. Biomass Calibration Study (KO in Q1 2015)
 - c. AfriSAR: P-band airborne campaign in Gabon in July 2014 and January 2015
 - d. AfriScat: P-band TomoSAR tower experiment in Ghana
 - e. BorealScat: P and L-band tower experiment with Chalmers Univ.
 - f. International Forest Biomass Network (KO Q1 2015)

Biomass development schedule

	2013				2014					2015				2016				2017			2018				2019				2020			
0	21	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
		B1 Tei	nder	Р	has	e B1	E	32/C/[Tend)/E1 Phase B			e B2	2					Phase					e C/D							Phase E1		
					15	RR			SR	R			PDI	2					CD	2							FA	R		Lau	nch	
										Pay	load	Equi	ipme	nt																		
																					Pay	load	AIT									
										PFM Platform Procure																						
																				P	FM /	AIT										
																								_								
															PFM Reflector Procurement																	
																													2			
																		PFM	SC I	ntegi	atio	n and	Test	ing								
																												00 V				
																								ļ	aun	ch Ca	ampa	ign				

- 1. Biomass is the first P-band and first radar tomographic space mission; it is a true Earth Explorer.
- 2. Biomass addresses urgent scientific, political and societal issues: its products can be immediately exploited by the global community of carbon cycle and climate scientists, the UN, carbon traders and resource managers.
- The new unique vision of Earth from Biomass will extend beyond forests and into measurements of ice, sub-surface geomorphology, topography and the ionosphere.