The BIOMASS Mission: Secondary Objectives (actually not that secondary...)

Philippe PAILLOU University of Bordeaux, France

Jorgen DALL Technical University of Denmark

> Klaus SCIPAL ESA – ESTEC

BIOMASS/POLinSAR, ESRIN, Frascati, 2015

My Short History of Remote Sensing

C-Band (HH, HV, VV)

L-Band (HH,HV,VV)

Visible

Near IR

Therm IR

X/C/L SAR

P-band SAR (Lidar)

The ESA 7th Earth Explorer Mission: BIOMASS

 \rightarrow First orbital P-band SAR (435 MHz @ 50 m resolution) \rightarrow Full polarimetry + interferometry + tomography

Large coverage of continental surfaces

"Ready to Fly" Secondary Applications

→ Subsurface Geology Mapping:

The first opportunity to map paleo-hydrology at continental scale in regions where water resources are a serious issue

\rightarrow Ice Flow Measurements:

A unique way to measure the seasonal variation of large ice sheets in relationship with climate change monitoring

→ Digital Elevation Model:

An efficient way to obtain the surface topography under dense vegetation (then useful for biomass measurement)

→ Ocean Surface Properties:

A new way to look at ocean surface structures + a unique sensitivity to discriminate between fresh/saline water

Subsurface Geology Mapping

P-band radar can penetrate dry sediments (> 5m):

- \rightarrow Maps the bedrock structures under the aeolian sand layer
- \rightarrow Provides information on the hydro-geological history
- \rightarrow Paleo-climatology and fossil water resources

The TUNISAR experiment

Airborne P-band ONERA/DEMR Tunisia 2010

Ice Flow Measurements

Anticipated benefits of P-band radar:

- \rightarrow Larger coherence time than at lower frequencies
- \rightarrow Deeper penetration into ice to reach stable scatterers
- \rightarrow Access to new time scales to monitor ice flows

Digital Elevation Models

Combine POLINSAR and P-band:

- \rightarrow Larger coherence of large-scale vegetation structures
- \rightarrow Deeper penetration into vegetation to reach the surface
- \rightarrow Terrain topography under dense vegetation

Ocean Surface Properties

Exploring the new frequency of P-band:

- → Strong dielectric contrast between fresh/saline water
- → Access to new surface roughness scale (waves, bathymetry)
- \rightarrow Coastal zones ocean interactions
- \rightarrow Sea ice dynamics and structure

Secondary Objectives: Coverage

Desert Apps Ice Apps Ocean Apps

→ Other significant applications (please contribute)

- Soil moisture and salinity
- Permafrost monitoring
- Volcanic activity monitoring
- Ice sheet structure sounding
- Snow cover properties
- Wetlands monitoring
- Ionosphere structure

- ...

→ Need for preparatory studies (2020 launch)

- Modeling (polarimetry, tomography, towards 3D)
- Airborne campaigns + field measurements
- Deal with low σ^0 (NESZ better than -30 dB)
- Definition of cal/val sites