MONITORING AIR POLLUTION AT GLOBAL SCALE USING IASI THERMAL INFRARED INSTRUMENT

S. Bauduin¹,

L. Clarisse¹, C. Clerbaux^{1,2}, D. Hurtmans¹ and P-F. Coheur¹

 ¹ Spectroscopie de l'Atmosphère, Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles, Brussels, Belgium
 ² Sorbonne Universités, UPMC Univ. Paris 06 ; Université Versailles St-Quentin ; CNRS/INSU, LATMOS-IPSL, Paris, France

Monitoring air quality using TIR observations

Difficulty: Sensitivity limited by the thermal contrast $(TC = T_{skin} - T_{air})$

Typical vertical sensitivity function for a TIR nadir sounder (Averaging kernels AK)

→ Maximum sensitivity of TIR sounders in the mid troposphere

Three general cases:

- $T_{skin}^{eff} = T_1 \rightarrow$ we're blind
- $T_{skin}^{eff} > T_1 \rightarrow absorption$ from the first layer (usual case during day time)
- $T_{skin}^{eff} < T_1 \rightarrow \text{emission}$ from the first layer (temperature inversion)

Three general cases:

• $T_{skin}^{eff} = T_1 \rightarrow$ we're blind

- $T_{skin}^{eff} > T_1 \rightarrow \text{absorption}$ from the first layer (usual case during day time)
- $T_{skin}^{eff} < T_1 \rightarrow \text{emission}$ from the first layer (temperature inversion)

The larger the thermal contrast, the better the sensitivity of TIR sounders to ABL

Recent studies have demonstrated the capabilities of TIR sounders to monitor near-surface pollution from local to global scales in favorable conditions

Recent studies have demonstrated the capabilities of TIR sounders to monitor near-surface pollution from local to global scales in favorable conditions

- Spectral range: 645-2760 cm⁻¹
 - Spectral resolution after apodization: 0.5 cm⁻¹
 - Radiometric noise: $\sim 0.1 \text{K} 0.2 \text{K}$

• 120 spectra along the swath (±48.3° Scan \rightarrow 2400 km), each 50 km along the trace

Small ground pixel size

Global coverage twice daily (morning and evening orbits)

NH₃ global product

Developed at the ULB by M. Van Damme¹

- Method based on Walker et al. (2011, AMT)
- <u>Idea</u>: computation of radiance indexes (HRI), which represent the strength of NH₃ spectral signal, and conversion into NH₃ total column using LUT
- <u>Results</u>: 7 years of NH₃ measurements, global distributions, temporal evolution in the NH and SH, validation², comparison with models³,...

Credit M. Van Damme

> NH₃ total column (molec/cm²)

¹Van Damme et al. (2014, ACP) ²Van Damme et al. (2015, AMT) ³Van Damme et al. (2014, JGR)

SO₂ near-surface local studies

1. In Norilsk¹

- Retrieval of very low altitude SO₂ plumes
- High sensitivity in winter (high **negative TC**, **low H**₂**O**)

¹Bauduin et al. (JGR, 2014)

SO₂ near-surface local studies

1. In Norilsk¹

- Retrieval of very low altitude SO₂ plumes
- High sensitivity in winter (high **negative TC**, **low H**₂**O**)

2. In the North China Plain²

- Simultaneous retrievals of 4 different pollutants (CO, SO₂, NH₃, (NH₄)₂SO₄)
- Buildup of pollutants + large temperature inversions

Boynard et al. (GRL, 2014)

¹Bauduin et al. (JGR, 2014)

²Boynard et al. (GRL, 2014)

SO₂ near-surface local studies

<u>BUT</u>

- Two studies limited to local sources
- Limited to negative thermal contrast
- → Positive thermal contrast can also be exploited
- Development of global product allowing the retrieval of near-surface SO₂ columns from IASI observations

- Method based on the one developed by Walker et al. (AMT, 2011)
- <u>Idea</u>: calculation of a radiance index (HRI), which represents the strength of the SO₂ signal in IASI meaurements, and conversion of this index into SO₂ concentrations
- Problem: one index per spectrum → integrated over the whole atmosphere → no vertical information!
- **Solution:** determination of the altitude of the plume

- Method based on the one developed by Walker et al. (AMT, 2011)
- <u>Idea</u>: calculation of a radiance index (HRI), which represents the strength of the SO₂ signal in IASI meaurements, and conversion of this index into SO₂ concentrations
- Problem: one index per spectrum → integrated over the whole atmosphere → no vertical information!
- Solution: determination of the altitude of the plume

Procedure in 2 steps:

- 1) Determination of the altitude of the plumes
 - Method developed by Clarisse et al. (2014, ACP) for the eruption of Nabro
 - Based on the computation of radiance indexes

→ Selection of plumes below 4 km of height

- Method based on the one developed by *Walker et al. (AMT, 2011)*
- <u>Idea</u>: calculation of a radiance index (HRI), which represents the strength of the SO₂ signal in IASI meaurements, and conversion of this index into SO₂ concentrations
- Problem: one index per spectrum → integrated over the whole atmosphere → no vertical information!
- Solution: determination of the altitude of the plume

Procedure in 2 steps:

- 1) Determination of the altitude of the plumes
 - > Method developed by Clarisse et al. (2014, ACP) for the eruption of Nabro
 - Based on the computation of radiance indexes

→ Selection of plumes below 4 km of height

- 2) Retrieval of near-surface SO₂ column
 - Calculation of HRI and conversion into SO₂ columns using LUT
 - Thermal contrast, H₂O total column and the zenithal angle are taken into account
 - > One LUT per bin of 5° of zenithal angle

Example of LUT for the bin 0-5° of zenithal angle, total column of $H_2O=2 \times 10^{20}$ molec/cm²

• If $SO_2 = f(TC, H_2O, HRI)$, the associated error is estimated using:

$$\sigma_{SO_2} = \sqrt{\sigma_{TC}^2 \left(\frac{\partial f}{\partial TC}\right)^2 + \sigma_{H_2O}^2 \left(\frac{\partial f}{\partial H_2O}\right)^2 + \sigma_{HRI}^2 \left(\frac{\partial f}{\partial HRI}\right)^2}$$

Avec $\sigma_{TC} = \sqrt{2} \times 1$ K, $\sigma_{H_2O} = 10\% Col_{H_2O}$, $\sigma_{HRI} = 1$

- 7-year time series (Beijing, Sar Cheshmeh) → temporal evolution of IASI sensitivity as function of TC and H₂O total column
- Comparison with measurements made in Bauduin et al. (2014) above Norilsk
 → the agreement is excellent
- Comparison with OMI observations (use of data from DOAS algorithm developed by N. Theys at BIRA) → good agreement given the biases of the instruments and the difference in the overpass times

 \rightarrow Retrieval of near-surface sulfur dioxide (SO₂) concentrations at a global scale using IASI satellite observations in preparation

- This work has begun with the SIROCCO (Synergetic SWIR and IR retrievals of near-surface concentrations of CH₄ and CO for Earth and Planetary atmospheres) Project (ESA)*
 - → See poster 75

*This work was funded by the SIROCCO Project under ESA contract number 4000107088. The project was conceived and supervised by A.G. Straume-Lindner and O. Witasse

- This work has begun with the SIROCCO (Synergetic SWIR and IR retrievals of near-surface concentrations of CH₄ and CO for Earth and Planetary atmospheres) Project (ESA)*
 → See poster 75
- Our contribution on Earth: investigating the sensitivity of IASI to nearsurface CH₄ and CO
 - 1) Theoretical approach (theoretical characterization using OE diagnostic)
 - 2) Retrievals of test cases and comparison with in-situ measurements

*This work was funded by the SIROCCO Project under ESA contract number 4000107088. The project was conceived and supervised by A.G. Straume-Lindner and O. Witasse

- Demonstration of the capability of IASI to measure near-surface CO in case of sufficiently large thermal contrasts
 - ightarrow theoretically and with real retrievals
- E.g.: retrievals above Windhoek airport and comparison with MOZAIC aircraft measurements

- Demonstration of the capability of IASI to measure near-surface CO in case of sufficiently large thermal contrasts
 - ightarrow theoretically and with real retrievals
- E.g.: retrievals above Windhoek airport and comparison with MOZAIC aircraft measurements

Correlation between seasonal cycle of CO and seasonal cycle of thermal contrasts:

 High CO vmrs from late summer to November when TC are large (≥10K)

During these episodes, IASI is sensitive to the surface and high CO concentrations are catched in the PBL (also found for MOZAIC)

- Demonstration of the capability of IASI to measure near-surface CO in case of sufficiently large thermal contrasts
 - ightarrow theoretically and with real retrievals
- E.g.: retrievals above Windhoek airport and comparison with MOZAIC aircraft measurements

Correlation between seasonal cycle of CO and seasonal cycle of thermal contrasts:

 High CO vmrs from late summer to November when TC are large (≥10K)

During these episodes, IASI is sensitive to the surface and high CO concentrations are catched in the PBL (also found for MOZAIC)

Same results for Hyderabad.

In Frankfurt, the agreement between the seasonality observed with MOZAIC and FORLI is worse \rightarrow thermal contrast!

Conclusions and perspectives

- Demonstration of the capability of IASI to measure near-surface pollutants in case of high thermal contrast
 → NH₃, SO₂ and CO (still on-going)
- Two products for the retrieval of near-surface concentrations at global scale:
 - NH₃ Calculation of radiance indexes and conversion into
 SO₂ columns using LUT
- Validation of SO₂ retrieval scheme should be done
- Theoretical studies and local retrievals performed for CO in the frame of the SIROCCO project

 \rightarrow extension to the globe and generalization using the FORLI algorithm, which allows retrieving CO profiles for the globe in NRT

Institut Pierre Simon Laplace

esa

