

Satellite measurements of nitric monoxide (NO) in the mesosphere and lower thermosphere

<u>S. Bender¹</u>, M. Sinnhuber¹, T. von Clarmann¹, G. Stiller¹, B. Funke², M. López-Puertas², K. Pérot³, J. Urban³, K. Walker⁴, J. P. Burrows⁵

KIT / ²IAA-CSIC / ³Chalmers University / ⁴University of Toronto / ⁵University of Bremen

Solar variability and climate

- Climate variability (natural and anthropogenic)
- Solar activity: solar cycle, solar storms, CMEs
- Geomagnetic activity: aurora, SPEs
- Solar activity impact on Earth's atmosphere and climate
- Solar particle forcing in climate models
- Solar particles and X-rays: NO in mesosphere and lower thermosphere (MLT, 50–150 km)
- Satellite NO measurements in MLT
 - Envisat (ESA mission): MIPAS, SCIAMACHY
 - Odin (ESA third party mission): SMR
 - SCISAT-1 (ESA third party mission): ACE-FTS

Solar influences on the atmosphere

Figure: Gray et al., 2010

Solar influences on the atmosphere

Figure: Gray et al., 2010

Solar influences on the atmosphere

Figure: Gray et al., 2010

Mesospheric–Thermospheric NO

by-product of N₂ (strong bond) dissociation:

- main reactions: $N^* + O_2$, $NO + h\nu$
- energy source: auroral and fast secondary electrons, soft solar X-rays

coupling to the atmosphere below (polar winter, SSW)

Figure: NOx descent 2008/2009, data courtesy of the MIPAS collaboration.

Mesospheric–Thermospheric NO

by-product of N₂ (strong bond) dissociation:

- main reactions: $N^* + O_2$, $NO + h\nu$
- energy source: auroral and fast secondary electrons, soft solar X-rays

coupling to the atmosphere below (polar winter, SSW)

Figure: NOx descent 2008/2009, data courtesy of the MIPAS collaboration.

Satellite NO MLT measurements

Daily zonal mean data

- scans in the MLT region (50 km to 150 km)
- ACE-FTS: IR, solar occultation, 1941 days 2004–2010
- MIPAS: IR, limb sounding, upper atmosphere (UA) mode, 199 days 2005–2012
- SCIAMACHY: UV, limb sounding, MLT mode, 78 days 2008–2012 (only daytime data)
- SMR: radio, limb sounding, 301 days 2003–present

Analysis

- time series at selected altitudes and latitudes
- multi-linear regression analysis
- superposed epoch analysis

Time series

Morphological overview at 85 km

Time series

Morphological overview at 105 km

High latitudes

Northern polar region (67.5°N)

Southern polar region (67.5°S)

Multi-linear regression

regression model

- annual and semi-annual harmonics
- linear in Lyman- α and Kp

offset

$$\begin{split} \varrho_{\text{NO}}^{\text{model}}(\phi, z, t) &= a(\phi, z) + b(\phi, z) \cdot \text{Ly}\alpha(t) + c(\phi, z) \cdot \text{Kp}(t) \\ &+ \sum_{n=1}^{2} \left[d_n(\phi, z) \cos(n\omega t) + e_n(\phi, z) \sin(n\omega t) \right] \end{split}$$

Multi-linear regression fit results

Northern polar region (67.5°N)

Multi-linear regression coefficients

Annual cycle (cosine part)

Multi-linear regression coefficients

Lyman-α

Multi-linear regression coefficients

Kp

Kp vertical profile

Polar region regression coefficients

- solar (particle) influence
- NO number density / Kp
- simple model for NO in MLT
- 1-D chemistry model ⇒ ionisation rates

Kp vertical profile

Karlsruhe Institute of Technology

Polar region regression coefficients

- solar (particle) influence
- NO number density / Kp
- simple model for NO in MLT
- 1-D chemistry model ⇒ ionisation rates

Figure: 2002–2003, 0.5 < ∆Kp < 1.5

Conclusions

- MLT NO important proxy for solar activity
- best suited: UV and IR limb sounders (daily global coverage possible)
- consistent MLT NO measurements: ACE-FTS, MIPAS, SCIAMACHY, SMR
- MIPAS and SCIAMACHY lost in April 2012

Other instruments

- OSIRIS: only from 85 km to 100 km
- SABER: only above 100 km
- SOFIE: solar occultation (limited global coverage)

Outlook

- refine statistical analysis methods
- reliable solar forcing parameters for (chemistry) climate models

future missions?