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The MIPAS instrument on Envisat has a large spectral coverage (154.3 um) measuring the most important IR emissions of CO,, i.e., the 15 um, 10 um and 4.3 um bands. Additionally, it has a very high spectral resolution (0.0625 cm?) [Fischer et al., 2008]. These characteristics makes it an
ideal instrument for studying the non-LTE processes of CO, emissions and measuring the CO, VMR, as well as for the temperature retrieval. In this paper we focus on the retrieval of non-LTE collisional rates and CO, VMR using emission spectra at 10 and 4.3 um in the mesosphere and
lower thermosphere (MLT). The unprecedented spectral coverage and spectral resolution of MIPAS allow us to study in depth the nonLTE emission of CO, in the 4.3 um, discerning the individual contributions to the limb emission of several tens of bands, including optically thick and
thin bands in this altitude range. These measurements thus allow us to acquire unique information of the non-LTE processes driving the populations of the CO, vibrational levels which are applicable not only to MIPAS but also to other limb emission instruments like SABER. We present
here new information about the non-LTE collisional processes as well as preliminary results of the daytime CO, VMR profiles in the MLT region.

1. Non-LTE modelling of CO, 10 and 4.3 um emissions 3. Retrievals of Non-LTE collisional rates: Temperature dependence and residuals
CO, daytime emissions at 4.3 um are in non-LTE above around the stratopause, where solar | | The use of currently accepted temperature dependence for some rates resulted in very large
pumping populates the ro-vibration energy levels more quickly than collisions thermalize | | residuals in the spectra. New temperature dependences have been derived.
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N,+O('D) -> N,(1)+O(°P) € Koo Third Hot 1 (TH1) 11112511102 (4.3 um) Fig. 3.1: Temperature dependence of the different rates used in this work. (a) k,, , of the fundamental and first hot bands (solid black
Third Hot 2 (TH2) 03311->03301 (4.3 um) line), fitted to the values from Inoue & Tsuchiya 1975 (black diamonds) with a=0.64; k., , for the second hot (solid red line) with a=1,
] o . . Third Hot 3 (TH3) 11111511101 (4.3 pm) and; k,, ; for the third hot (solid blue line) and k,, , for the fourth hot (solid pink line) both with a=0.60; dashed black line represents
The most important collisions in order to explain Fourth Hot 1 (FRH1) 2001320003 (4.3 pm) the temperature dependence of the Kwv’s rates from previous works (standard values). (b) Fermil (black line) with a=0 and Fermi2
the em|SS|OnS Of the fundamenta (FB)’ fl rst hot Fourth Hot 2 (FRHZ) 12212512202 (4-3 um) (red Iine) with a=1.0 [Jurado—Navarro EF aI., 2015] . .
(FH), second hot (SH), third hot (TH) and fourth 2 euriln ek 2 (D AT AT (A5 ] Examples of observed and simulated MIPAS spectra at 4.3 and 10 um are shown in Fig. 3.2. The
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hot (FRH) bands are summarized in Tables 1.1 Fourth Hot 4 (FRH4) 2001220002 (4.3 ) agreement of simulated and observed spectra in the 4.3 um region is within 5% (blue line in left
. : Fourth Hot 5 (FRH5 12211512201 (4.3 bottom panel). In the 10 um region it is slightly worse (10%) but within the noise (right bottom
and 1.2. The simulations have been performed 70 b1 () £ T panel) Hmres shtly (~10%) (rig
_ , Fourth Hot 6 (FRH6) 20011520001 (4.3 um) panel).
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Figl.1: Daytime vibrational temperatures profiles for the upper levels of the main CO, 4.3 um bands (see Table 1.2). The Wavenumber (cm™) Wavenumber [cm™]
atmospheric conditions correspond to a reference atmosphere in April, 45°N, SZA=44.5°, Fig. 3.2: Limb spectra observed by MIPAS at 4.3 um (left) and 10 um (right) (upper panels) and residuals (lower panels) for
. . _ o . the standard (previous works, red) and retrieved rates (blue). Left: the P and R branches of the CO, SH bands are visible.
The limb radiance spectra shows the complexity of the CO, emissions in non-LTE: there are The right plot shows the fundamental laser band emitting near 10 um. Daytime measurements taken on January, 1 2009,
tens of optically thick and thin contributing bands (Fig. 1.2). 24°S, 60°E at tangent heights of 70 km (left) and 63 km (right).
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Fig. 1.2: Left: Radiance contributions of the individuals bands (FB, FH and SH’s) at 4.3 pum at a tangent height of 78 km. GOEEEEEEIEEEEE; ' 60|
(bands as in Table 1.2). Daytime measurement taken on January, 1 2009, 24°S and 60°E. Centre and right: Zoom of the .90 .60 30 0 30 6'0 90 -90 60 30 0 30 60 90
MIPAS spectra showing the contribution of lines from several bands, as noted. Latitude (deg) Latitude (deg)
CO, WACCM vs. ACE, MIPAS: 17 Jan 2010 CO, WACCM vs. ACE, MIPAS: 30 Mar 2010
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2. Retrievals of Non-LTE collisional rates: Results 3 3
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needed. The non-LTE retrievals of the collisional rates (Fig. 2.1) show stable results with s | s |
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o gg [Lopez-Puertas & Taylor, 2001] Fig. 4. Retrieved CO, VMR for solstice conditions (17 Jan 2010) (left panels) and equinox (30 March 2010) (right). Upper panels show
) | TR - T - - Fermi2 2.4x1012 5.57x10°13 zonal mean plots and lower panels mean profiles for 50-70°N comparing with WACCM and ACE. In solstice MIPAS is generally smaller
£ zzé_ R T A R A R T T IR R T TN o [Ldpez-Puertas & Taylor, 2001] than ACE but close to WACCM. In equinox MIPAS is in very good agreement with ACE (and both are larger than WACCM).
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v E RS [Nebel et al., 1994] 5. Conclusions and Future Work
S 5.8
284 Kvv (TH) 5-Qxl0'13 | 5.61x10* * A new set of non-LTE collisional rates affecting the populations of the CO, states emitting near 10, 4.3 and 2.7
. o5 Kwa ‘ ) Bl i R B um has been derived from MIPAS spectra. Some of these rates are very different (factors of 1-10) from the
5 o0 it ibdasoatababafeantadian Lo it yns i iadiaidasis et o Kvv (FRH) 5.0x10°% 5.64x107 values currently used, present a different temperature dependence, and hence have a significant impact on
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— — the modelling of these emissions as measured by wideband instruments (e.g. SABER).
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60 _40 20 0 20 40 60 the polar summer, MIPAS is smaller than ACE above ~80 km, while it is larger than WACCM (Kzz*2). Global
Latitude [deg] distributions of CO, for the MIPAS MA/UA measurements (2007-2012) are currently being retrieved.
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