Satellite-data constraints on tropical fire carbon emissions.

A. Anthony Bloom¹, ATMOS Conference, June 8th 2015

Also: J. Worden¹, K. Bowman¹, M. Lee¹, H. Worden², T. Kurosu¹, C. Frankenberg¹, D. Schimel¹, A. Eldering⁻¹, J. Liu¹. ¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

²National Center for Atmospheric Research, Boulder CO, USA

South America fires & drought

- 2007 and 2010 were major fire years, 2010 was a once-in-a-century drought.
- Total C emissions in both years not known

South America fire emissions

Savanna & grassland fires

Lower Biomass Fires are more efficient

Drought fires, Cerrado, Brazil

CO₂:CO = 25:1 CH₄:CO = 1:28

Forest fires

Higher Biomass Less efficient

Forest fires, Amazon, Brazil

CO₂:CO = 15:1 CH₄:CO = 1:15

- 2007: Moderately dry year 2010: Once-in-a-century drought
- Similar burned area
- Higher percentage of forest burned
- Given the biomass within burned areas, we expect more CO and CO₂ emissions in 2010

- Q1: Why higher BA and lower CO in 2010?
- Q2: Did C losses increase or decrease in 2010?

Method: model-data fusion

F = fire C fluxes
A = burned area
CBD = Combusted
Biomass Density
E = Emission factors
b = land-cover type
(sav., for., agr.)
S = species
(CO₂, CH₄, CO)

- We bring model and data (w. associated uncertainty) together in Bayesian framework.
- We quantify 2007-to-2010 study area changes in CBD and EF

Results: 2007-to-2010 change in efficiency & carbon loss

Results:

- 72% probability of more efficient fires in 2010
- 88% probability
 of reduced C
 emissions in
 2010.
 60% prob. 2010
 fires were more

efficient & less fuel was burned.

Bloom et al., GRL, 2015

NASA

Results: 2007-to-2010 fire C loss difference

• Bottom-up

GFEDv3 2007-to-2010 difference

= +23%

• Top-down

- (a) 2007-to-2010 difference(median) = -18%, despitelarger burned area.
- (b) Decrease a result of forest and savanna decrease in combustion completeness
- (c) 82.4% probability 2010 C losses are lower than 2007.
- 82% probability of lower C emissions during drought year.
- What mechanisms could lead to lower 2010 emissions, relative to 2007 fires?

2007-to-2010 reduced combusted biomass

H. A: Reduced combustion factor (?)H. B: Reduction in biomass (?)

- Reduction in GOME-2 Solar Induced Fluorescence (4-6%) suggests reduced fuel load in 2010.
- Repeat fires in 2010 (0%-8%) indicate reduction in biomass.

How will repeat droughts affect biomass burning carbon fluxes?

- Inter-annual changes in fire carbon fluxes are not fully resolved
- OCO-2 data can be used to constrain CO:CO₂.
- Biomass change (e.g. GEDI and BIOMASS missions) can be used to constrain biomass loss rates

Bloom et al., GRL, 2015

Southern Africa fires

MODIS fire counts: Sep 8th – 17th

MODIS fire counts: Sep 28th – Oct 7th 2014

Southern Africa Fires

CO₂:CO from OCO-2 and MOPITT

CO₂:CO from model

- CO₂:CO ratios from September 2014 southern Africa fires are consistent with expected CO₂:CO emissions.
- OCO-2 and MOPITT CO values can be used to quantify fire combustion efficiency and ultimately to better constrain CO, CO₂ emissions from fires.

Conclusions

- Higher burned area but less CO emissions during the 2010 South America drought fires.
- 88% probability of reduction in combusted biomass density; 72% probability of increase in combustion efficiency
- OCO-2, TROPOMI, GEDI, BIOMASS will help resolve tropical fire emissions and processes controlling inter-annual variability in biomass burning emissions.

