

Nickolay Krotkov¹ , Can Li^{1, 2}, Joanna Joiner¹, Vitali Fioletov³, Chris McLinden³, Pepijn Veefkind⁴; Nicolas Theys⁵, Isabelle De Smedt ⁵

¹NASA GSFC, ²ESSIC, University of Maryland, ³Environment Canada, ⁴KNMI, de Built, The Netherlands; ⁵BIRA-IASB, Brussel

ATOMOS 2015 Conference

Air quality session

University of Crete, Heraklion, Greece, 8-12 June 2015

Email: Nickolay.A.Krotkov@nasa.gov

Outline

- Introduction to the NASA GSFC PCA algorithm
- Application to OMI SO₂ retrievals
- New Development
- Application to HCHO retrievals
- Contribution to the Sentinel-5P Mission

Methodology (Framework): PCA

Instead of explicit modeling of ozone, RRS, and other instrumental features, we use a **data-driven approach** based on principal component analysis (PCA) with spectral fitting

Fitting of the right hand side to the spectrum on the left hand side \rightarrow SO₂ column amount and coefficients of PCs

(See Guanter et al., 2012; Joiner et al., 2013; Li et al., 2013)

Example PCs from entire row # 11, Orbit 10990

(a-c) First few PCs Blue line: scaled reference Ring spectrum

(d) Least squares fitting residuals for a pixel near Hawaii

PC #1: Mean spectrum

PC #2: O₃ absorption PC #3: Surface reflectance (also Ring signature)

PCs #4 and #5: likely measurement artifacts, noise (>99.99% variance explained)

Smaller residuals with SO₂ Jacobians fitted

The OMI PCA SO₂ Algorithm Became Operational on 09/18/2014, Data Released in October

Both Retrievals assume the same simplified, fixed conditions in retrievals (SZA = 30°, VZA=0°, mid-latitude O_3 profile with O_3 = 325 DU, cloud-free, R = 0.05, SO₂ mostly in the lowest 1 km of the atmosphere)

August, 2006

(a) OMI PCA SO2

PCA algorithm reduces retrieval noise by a factor of two as compared with the BRD algorithm
SO₂ Jacobians for PCA algorithm calculated with the same assumptions as in the BRD algorithm

OMI PCA Retrievals show Changes in SO₂ in Eastern Europe and Turkey

OMI PCA Retrievals show dramatic decrease in SO₂ point sources in Eastern US

OMI

OMI PCA Retrievals show decrease in SO₂ pollution in Eastern China

OMI PCA Retrievals show dramatic increase in SO₂ pollution in North Eastern India

Development: Table Lookup Approach for More Accurate Jacobians

Use of lookup table to account for effects of viewing geometry, O₃, reflectivity, clouds, and vertical distribution on SO₂ Jacobians

Application to S-NPP OMPS HCHO Retrievals

Ozone Mapping and Profiler Suite (OMPS):

- •Flying on NASA/NOAA Suomi National Polar-orbiting Partnership spacecraft
- Nadir mapper similar to OMI, but lower spectral (~1 nm) and spatial resolution (50 × 50 km² at nadir)
 <u>HCHO NOT a required/anticipated product from OMPS</u>

OMI and OMPS PCA SO₂ Retrievals

Daily Regional Air Quality and Transport Episodes

OMI SO₂ Retrievals, May 01-04, 2005

(b) 2005/05/02

(c) 2005/05/03

(d) 2005/05/04

SNPP/OMPS SO₂ Retrievals, May 01-04, 2013

(a) 2013/05/01

(b) 2013/05/02

- During the pre-launch phase (2015- early 2016): continue the comparisons of our SO₂ and HCHO PCA retrievals with BIRA's retrievals using official TROPOMI algorithms as applied to OMI;
- During the commissioning phase (2016): apply PCA algorithms to selected subset of TROPOMI L1B spectra and compare with the ESA's provisional SO₂ and HCHO products;
- During the operational phase (2017-2021): apply PCA algorithm and oversampling techniques to selected subsets of TROPOMI L1B data (point/area sources) to produce SO₂ and HCHO time series that will overlap with OMI records to facilitate study of long-term emission trends and pollutant lifetime;