

Twelve Years of the Atmospheric Chemistry Experiment (ACE) Satellite: Mission Status and Recent Results

Kaley A. Walker^{1,2}, Patrick E. Sheese¹, Chris Boone², Peter Bernath^{3,4}, and C. Thomas McElroy⁵

¹Physics, University of Toronto; ²Chemistry, University of Waterloo;
 ³Chemistry and Biochemistry, Old Dominion University;
 ⁴Chemistry, University of York (UK);
 ⁵Earth and Space Science and Engineering, York University

ATMOS 2015 – University of Crete, Heraklion – 8-12 June 2015

ACE on SCISAT-1

Atmospheric Chemistry Experiment (ACE) Satellite Mission:

Mission to measure atmospheric composition: profiles of trace gas species, cloud and aerosol extinction and temperature/pressure

Launch date: 12 August 2003 Orbit: 74° inclination at 650 km Measurement mode: solar occultation

ACE-FTS:

- FTIR spectrometer, 2-13 microns at 0.02 cm⁻¹ resolution
- 2-channel visible/NIR imager, 0.525 and 1.02 microns

MAESTRO:

 dual UV / visible / NIR grating spectrophotometer, 285 to 1030 nm at ~1-2 nm resolution

Pointing: suntracker in ACE-FTS

ACE Mission Status

- Now completing 12th year in orbit designed for 2 year lifetime

 Starting to see some degradation in ACE-FTS performance
 and MAESTRO continues to "age gracefully"
- Since launch, satellite and instrument operations nominal
 - Routine operations began on 21 February 2004
 - On 1 July 2015, SCISAT will complete its 64,000th orbit!
 - ~50% of occultations occur in polar regions (> 60 degrees)
- CSA conducted review of ACE during the first half of 2014
 - Based on the positive response from the panel, CSA has approved operation of SCISAT until end of March 2018

ACE Data Products

- ACE-FTS profiles (current version 3.5; previous v2.2+updates/2.5):
 - Tracers: H_2O , O_3 , N_2O , NO, NO_2 , HNO_3 , N_2O_5 , H_2O_2 , HO_2NO_2 , N_2
 - Halogen-containing gases: HCl, HF, ClONO₂, CFC-11, CFC-12, CFC-113, COF₂, COCl₂, COFCl, CF₄, SF₆, CH₃Cl, CCl₄, HCFC-22, HCFC-141b, HCFC-142b
 - Carbon-containing gases: CO, CH₄, CH₃OH, H₂CO, HCOOH, C₂H₂, C₂H₄, C₂H₆, OCS, HCN and pressure / temperature from CO₂ lines
 - Isotopologues: Minor species of H₂O, CO₂, O₃, N₂O CO, CH₄, OCS
 - Research species: ClO, acetone, PAN (peroxyacetyl nitrate), etc.
- MAESTRO profiles (current version 3.12.1; validated version 1.2):
 - O₃, NO₂, optical depth and aerosol (water vapor research version)
- IMAGERS profiles (current version 3.5; validated version 2.2):
 - Atmospheric extinction & aerosol extinction at 0.5 and 1.02 microns

ACE-FTS v3.5/v2.5 Update

Fix for processing issue from October 2010 onward:

- Versions 2.2 and 3.0 results should not be used because of problems with pressure and temperature information obtained from the Canadian Meteorological Center.
- New processing versions (starting with v3.5, then v2.5) are being completed to provide corrected results for the affected time period (October 2010 onward).
 - Version 3.5 will include research products for high altitude CO, C₂H₆, HCFC-22, polar N₂O
 - There is also a new "research" product for CH₄
 - This version will be released in "batches" with the first made available in Sept. 2014 we are working on completing the second batch for release in the coming months

Version 3.5 Release

- The "preliminary" release of version 3.5 includes:
 - ACE-FTS & ACE-Imager profiles for this version
 - Also, geolocation information along the measurement path is available for the 1-km and tangent grid data
 - New data flagging has been developed for ACE-FTS profiles
 - Derived Meteorological Products (DMPs) are available
- Also, we have identified multiple periods with missing data so we are going back to "rescue" occultations as processing continues for v3.5
 - Ensure those processed in v2.2 and 3.0 are present in v3.5
- Also with the v3.5 ACE-FTS release, a new version of ACE-MAESTRO has been released (v3.12.1)

Data Flagging for v3.5 Profiles

- Developed to provide better guidance to teams for use of ACE-FTS profiles
 - To provide more quality advice than the Data Issues List and fitting error ranges for removing outliers
 - Employing a better way to deal with outliers when data distributions are not symmetric
- Uses two step process using 1-km grid dataset
 - For given height and latitude region, calculate "expected" density distribution (Gaussian mixture distribution)
 - For each day, using 15-day running median filter with±10 times the median average deviation (MeAD)

Examples for Antarctic SR

First Step - PDFs Calculated

• For 30 degree latitude ranges, type of observation and each altitude (on 1 km grid)

Second step – 15-day filter

- Used 15-day running median filter with±10 times the MeAD rather than MAD (median absolute deviation) for efficacy
- Shown for N_2O at 35.5 km

P. E. Sheese et al., AMT, 8, 741-750 (2015).

MAESTRO "Research" H₂O

- Match observed differential optical depth (DOD) in the ~940 nm band with simulated DOD using iterative retrieval (i.e. Chahine-updating of VMR profile) [Sioris et al. Adv. Space Res., 2010]
- Retrieval errors calculated by perturbation Smallest relative errors in mid-trop (5 km)
- Vertical resolution of water vapour profile approaches vertical sampling
- WAVAS-II validation shows few issues: e.g., 1 ppm dry bias in Antarctic in summer
- 2004-02 to 2013-03 available

C. Sioris et al., in preparation

New ACE-FTS v3.5 Climatology

- Building on work by Jones et al., ACP (2011) and that done for SPARC Data Initiative
- Using quality filtered ACE-FTS v3.5 profiles from Feb. 2004 – Feb. 2013 (was 2004-2009)
- O₃, H₂O, CH₄, N₂O, CO, NO, NO₂, N₂O₅, HNO₃, HCl, HF, ClONO₂, CFC-11 and CFC-12
 - C₂H₆, C₂H₂, HCN, OCS, HCOOH, CH₃OH, H₂CO
 - 45 levels up to 0.0001 hPa as data available (was 0.1 hPa)

Summary

- ACE Instruments and satellite are continuing to function nominally and produce excellent results
 - v3.5 to fix processing issue released with new data flags
- Data being used for scientific and validation studies
 - Reprints available from http://www.ace.uwaterloo.ca
 - Climatological datasets and atlases available from website
 - Validation results published in *Atmos. Chem. Phys.*: <u>http://www.atmos-chem-phys.net/special_issue114.html</u>

Funding for ACE and this work provided by:

- Canadian Space Agency (CSA)
- Natural Sciences and Engineering Research Council of Canada
- Environment Canada
- Natural Environment Research Council (NERC)

Joint Science Team Meeting

- This fall we will be holding a joint SCISAT-Odin Science Team Meeting in Toronto, Canada (19 – 21 Oct. 2015)
 - All are welcome to attend and present at the meeting
 - We are interested in developing new collaborations so come and learn more about ACE and Odin
 - Let me know if you would like to be on the mailing list for the meeting!