ATMOS 2015 Workshop, 8-12 June 2015, Univ. of Crete, Heraklion, Greece

T. Yokota, N. Kikuchi, Y. Yoshida, M. Inoue, I. Morino, O. Uchino, H-S Kim, H. Takagi, M. Saito, S. Maksyutov, F. Kawazoe, and M. Ajiro Center for Global Environmental Research (CGER)

National Institute for Environmental Studies (NIES), Japan

Contents

- Introduction
 - GOSAT mission overview
- Resent remarkable events in 2014 & 2015
- Six years of the GOSAT project
 - Observation of columnar CO₂ & CH₄ amounts
 - Monthly regional flux estimation of CO₂ and CH₄ by using GOSAT data for three years
- Future perspective
 - GOSAT-2 project

Organizations Promoting the GOSAT Project

◆ Mission promoted by JAXA, MOE, and NIES.

MOE

Ministry of the Environment

Sensor develop. (partly) Validation funding, Policy making

NIES

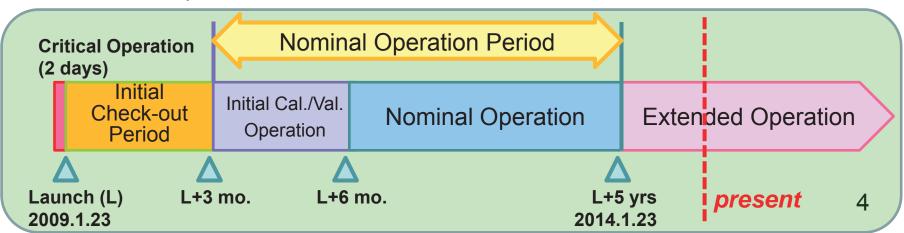
National Institute for Environmental Studies

JAXA

Japan Aerospace Exploration Agency

Rocket launch, Satellite and Sensor development & operation, Data acquisition, Calibration, L1 data processing, Data distribution to major organizations (NASA, ESA, ...)

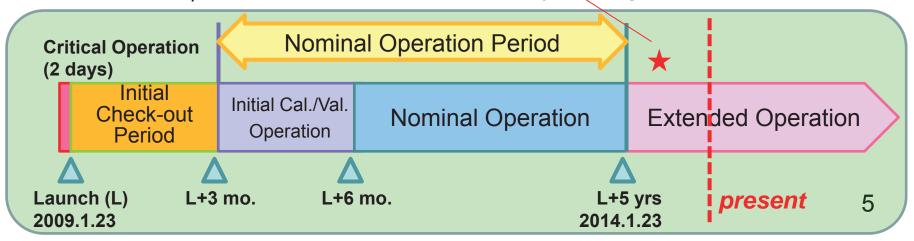
Developing & improving GHG retrieval algorithms, L2 and higher level data processing, Data validation, Estimating carbon fluxes, Data product distribution


Objectives of the GOSAT Project

- To obtain the <u>global distributions</u> of greenhouse gas (GHG) concentrations (CO₂ and CH₄) and their <u>temporal variations</u>
 - To visualize changing GHG global distributions
 - To fill out the gaps in the network of ground monitoring stations
- 2. To improve accuracy of the carbon flux (net sources and sinks) estimation on a sub-continental scale
- 3. To develop technologies for future GHG observing satellites ⇒ GOSAT-2

GOSAT Project -present status

- GOSAT was launched on January 23, 2009 and has been in operation for more than six years.
- GOSAT observations successfully filled out the gaps in the ground-based monitoring network, except for around the equator and the high-latitude regions.
- Uncertainties in monthly regional flux estimates of CO₂
 and CH₄ have been decreased by using GOSAT data.


GOSAT Project -present status

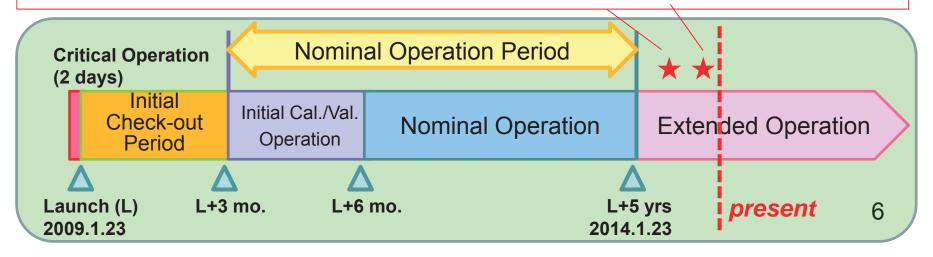
Greethouse gases
Observing SATellite

On 25 May 2014, rotation of one of the two solar paddles stopped. However, electric power supplied from a single paddle is sufficient enough to operate all of the onboard equipment nominally.

Observation recovered on 1 June 2014. GOSAT still survives with its single lung.

Uncertainties in monthly regional flux estimates of CO₂ and CH₄ have been decreased by using GOSAT data.

GOSAT Project -present status


Greenhouse gases

Cosserving SATellite

On 25 May 2014, rotation of one of the two solar paddles stopped.

The FTS pointing mechanism became unstable since September 2014. JAXA ceased TANSO-FTS observation on 16 December 2014, and made careful discussions and ground-based tests, and finally switched the gimbal mirror system to the redundant sub-system on 26 January 2015 with consent of MOE, NIES, and GOSAT Science team members.

TANSO-FTS data have been renewed since February 2015 (with a different sensor characteristics).

Size	Main body	3.7 m x 1.8 m x 2.0 m (Wing Span 13.7m)			n		
Mass	Total	1750kg					
Power	Total	3.8 KW (EOL)					
Life Time	5 years						
Orbit	sun synchronous orbit						
	Local time			13:00-	+/-0:	15	
	Altitude			666	3km		
	Inclination			980	deg		
	Repeat		3 days				
Launch	Vehicle		H-IIA				
	Schedule		Jan. 23 2009				

TANSO onboard GOSAT

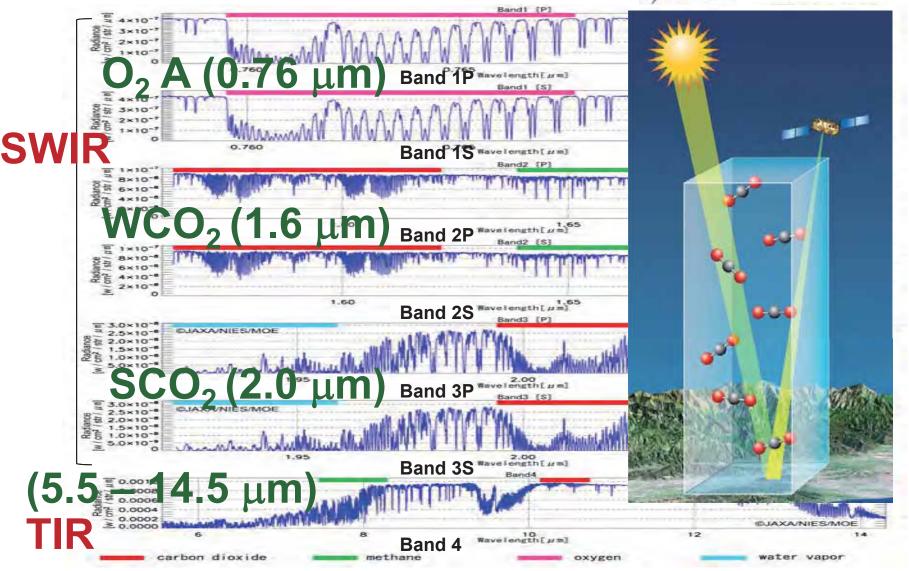
TANSO=Thermal And Near infrared Sensor for carbon Observation

TANSO (炭素) = Carbon

(Fourier Transform Spectrometer)

SWIR reflected on the earth's surface

-TIR radiated from the ground and the atmosphere


TANSO-CAI (Cloud and Aerosol Imager)

Ultraviolet (UV) (0.38 micron), visible (0.67 micron), NIR (0.87 micron), and SWIR (1.6 micron)

(Courtesy of JAXA)

TANSO-FTS Level 1B spectra **** (15)

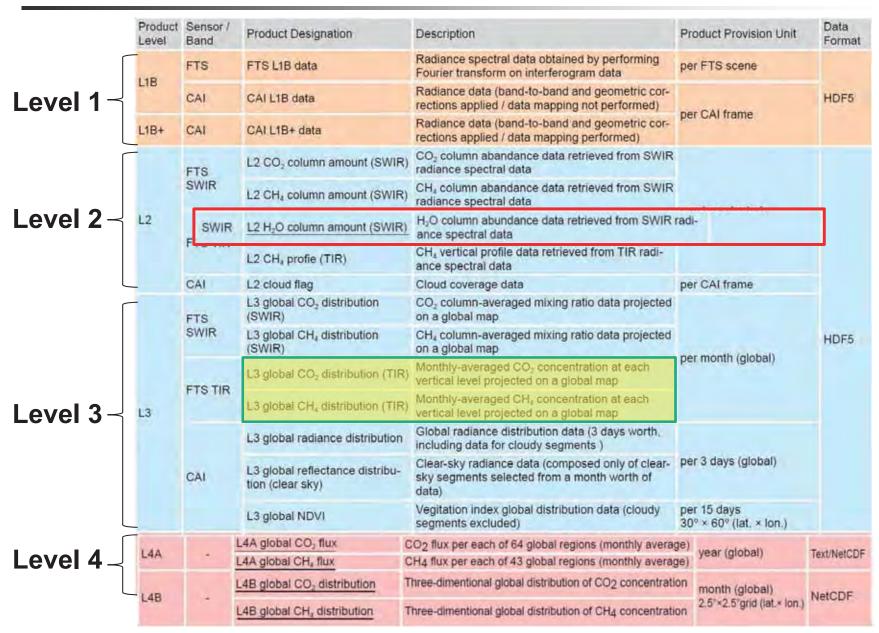
Settled in 2005

GOSAT Standard Data Products

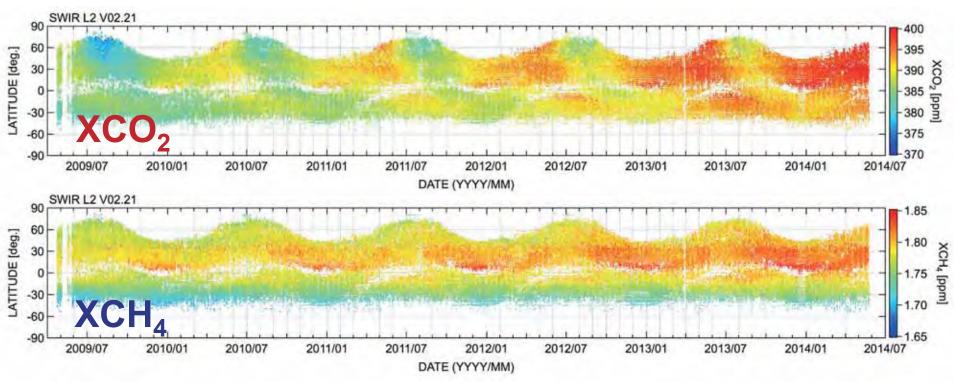
	Product Level	Sensor / Band	Product Designation	Description	Product Provision Unit	Data Format
Level 1	L1B	FTS	FTS L1B data Radiance spectral data obtained by performing Fourier transform on interferogram data		per FTS scene	
		CAI	CAI L1B data	Radiance data (band-to-band and geometric cor- rections applied / data mapping not performed)	per CAI frame	HDF5
	L1B+	CAI	CAI L1B+ data	Radiance data (band-to-band and geometric cor- rections applied / data mapping performed)	per GAI traine	
Level 2	L2	FTS SWIR	L2 CO ₂ column amount (SWIR)	CO ₂ column abandance data retrieved from SWIR radiance spectral data		HDF5
			L2 CH ₄ column amount (SWIR)	CH ₄ column abandance data retrieved from SWIR radiance spectral data		
		FTSTIR	L2 CO ₂ profile (TIR)	CO ₂ vertical profile data retrieved from TIR radi- ance spectral data	can be selected	
			L2 CH ₄ profie (TIR)	CH ₄ vertical profile data retrieved from TIR radiance spectral data		
		CAI	L2 cloud flag	Cloud coverage data	per CAI frame	
Level 3	L3	FTS SWIR	L3 global CO ₂ distribution (SWIR)	CO ₂ column-averaged mixing ratio data projected on a global map		
			L3 global CH ₄ distribution (SWIR)	CH ₄ column-averaged mixing ratio data projected on a global map	and according for both of the	
		FTS TIR	L3 global CO ₂ distribution (TIR)	Monthly-averaged CO ₂ concentration at each vertical level projected on a global map	per month (global)	
			L3 global CH ₄ distribution (TIR)	Monthly-averaged CH ₄ concentration at each vertical level projected on a global map		
		ÇAI	L3 global radiance distribution	Global radiance distribution data (3 days worth, including data for cloudy segments)		
			L3 global reflectance distribu- tion (clear sky)	Clear-sky radiance data (composed only of clear- sky segments selected from a month worth of data)	per 3 days (global)	
			L3 global NDVI	Vegitation index global distribution data (cloudy segments excluded)	per 15 days 30° × 60° (lat. × lon.)	
Level 4	L4A		L4A global CO ₂ flux	CO ₂ flux per each of the 64-divided global regions (monthly average)	per year (64 regions)	Text
	L4B	-	L4B global CO ₂ distribution	Three-dimentional, global distribution of CO ₂ concentration	per month 2.5° × 2.5° grid (lat. × lon.)	NetCDF

Revised in March 2015

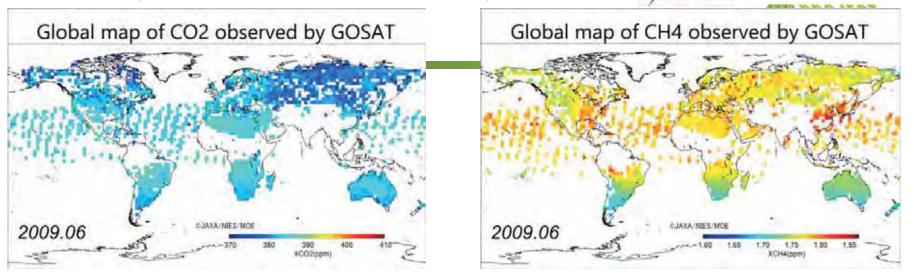
GOSAT Standard Data Products


	Product Level	Sensor / Band	Product Designation	Description	Product Provision Unit	Data Format
Level 1	L1B	FTS	FTS L1B data	Radiance spectral data obtained by performing Fourier transform on interferogram data	per FTS scene	HDF5
		CAI	CAI L1B data	Radiance data (band-to-band and geometric cor- rections applied / data mapping not performed)	per CAI frame	
	L1B+			Radiance data (band-to-band and geometric cor- rections applied / data mapping performed)	per GAI frame	
Level 2		FTS SWIR	L2 CO ₂ column amount (SWIR	CO ₂ column abandance data retrieved from SWIR radiance spectral data		HDF5
			L2 CH ₄ column amount (SWIR)	CH ₄ column abandance data retrieved from SWIR radiance spectral data	and he had not not a	
	L2	.2 FTS TIR	L2 CO ₂ profile (TIR)	CO ₂ vertical profile data retrieved from TIR radi- ance spectral data	can be selected	
			L2 CH _a profie (TIR)	CH ₄ vertical profile data retrieved from TIR radiance spectral data		
		CAI	L2 cloud flag	Cloud coverage data	per CAI frame	
Level 3		FTS SWIR	L3 global CO ₂ distribution (SWIR)	CO ₂ column-averaged mixing ratio data projected on a global map		
			L3 global CH ₄ distribution (SWIR)	CH ₄ column-averaged mixing ratio data projected on a global map	was according for laterally	
		FTSTIR	L3 global CO ₂ distribution (TIR	Monthly-averaged CO ₂ concentration at each vertical level projected on a global map	per month (global)	
	L3		L3 global CH₄ distribution (TIR	Monthly-averaged CH ₄ concentration at each vertical level projected on a global map		
		CAI	L3 global radiance distribution Global radiance distribution data (3 days worth, including data for cloudy segments)			
			L3 global reflectance distribu- tion (clear sky)	Clear-sky radiance data (composed only of clear- sky segments selected from a month worth of data)		
			L3 global NDVI Vegitation index global distribution data (cloudy segments excluded)		per 15 days 30° × 60° (lat. × lon.)	
Level 4			L4A global CO ₂ flux Per each of 64 global regions (monthly average		ge) year (global)	Text/NetCDF * Ion.)
	L4A	*	L4A global CH, flux CH4 flux per each of 43 global regions (monthly a		ge) year (global)	
	L4B	1	L4B global CO ₂ distribution	B global CO ₂ distribution Three-dimentional global distribution of CO ₂ concentration		
			L4B global CH, distribution	Three-dimentional global distribution of CH ₄ concentration 2.5°×2.5°grid (

Revised in March 2015


GOSAT Standard Data Products

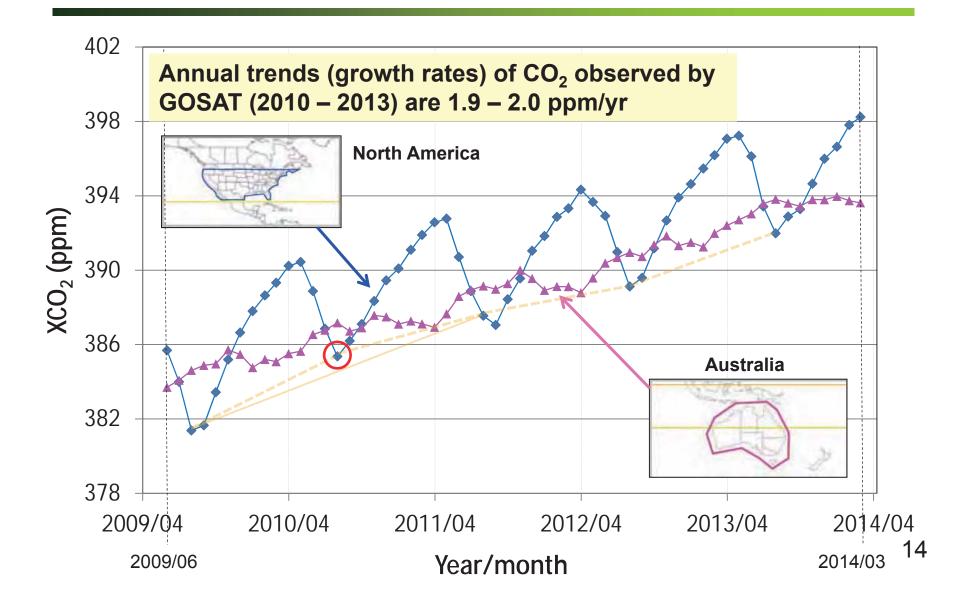
TANSO-FTS SWIR Level 2 (V02.21) XCO₂ & XCH₄


April 2009 - May 2014

(by Y. Yoshida (NIES))

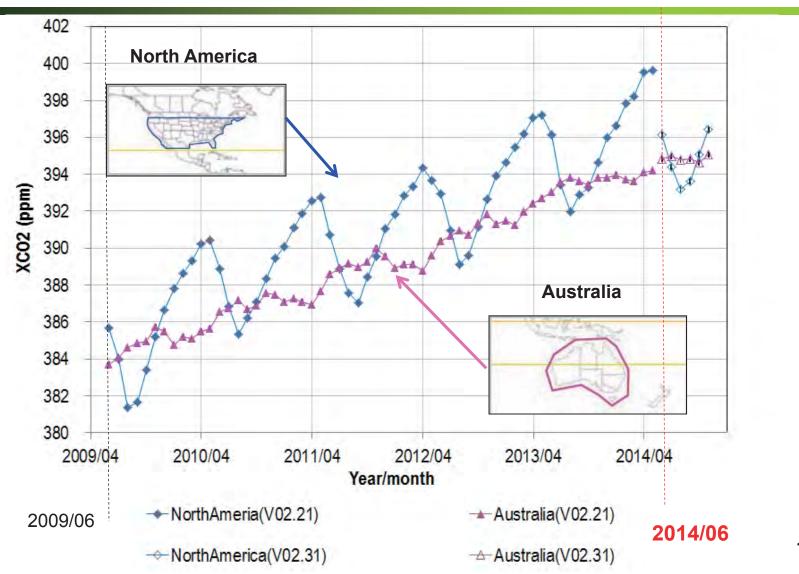
55-month-long GOSAT XCO₂ and XCH₄

(June 2009 – December 2013)


- Above movies are 1-month-moving average GOSAT XCO₂ and XCH₄ with three-day interval. The mesh size is 2.5 degree.
- Various interesting features are shown in these movies such as annual and seasonal variations of XCO₂ and localized anomalies of XCH₄.
- GOSAT obtained XCO₂ and XCH₄ data for more than 6 years. Validation results suggest that relative accuracies (variations) of XCO₂ and XCH₄ are ≈ 2 ppm (≈ 0.5%) and 12 ppb (≈ 0.7%), respectively.

Monthly Regional Averages WAA ME of XCO₂

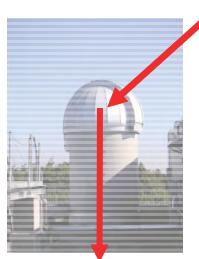
(TANSO-FTS SWIR Level 2 (Ver.02.2*)

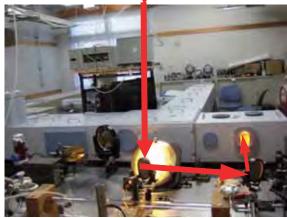


Monthly Regional Averages WA WES of XCO₂

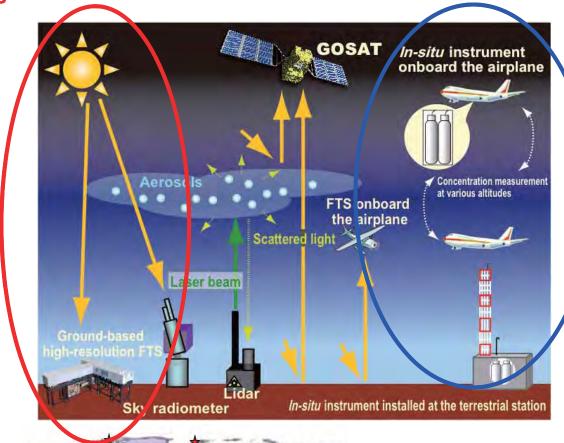
(TANSO-FTS SWIR Level 2 (Ver.02.2*)

Schematic illustration of the GOSAT validation


Operational Site

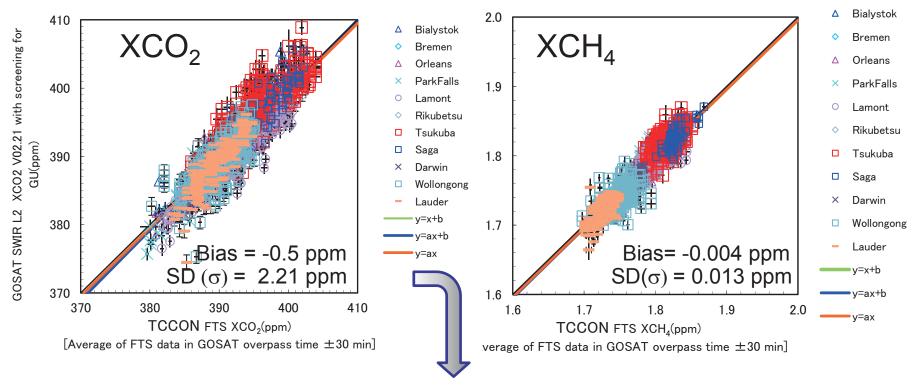

Possible Site

Ground-based high-resolution FTS

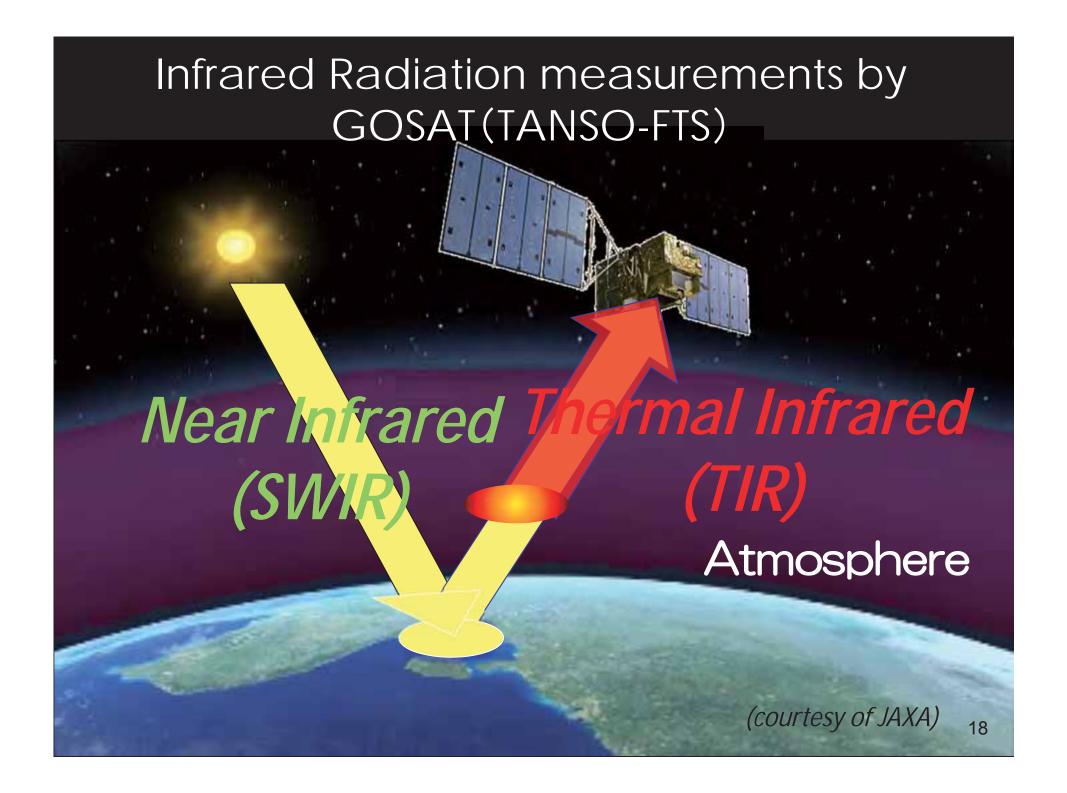

Aircraft measurements

Morino et al. (2011, AMT) Yoshida et al. (2013, AMT)

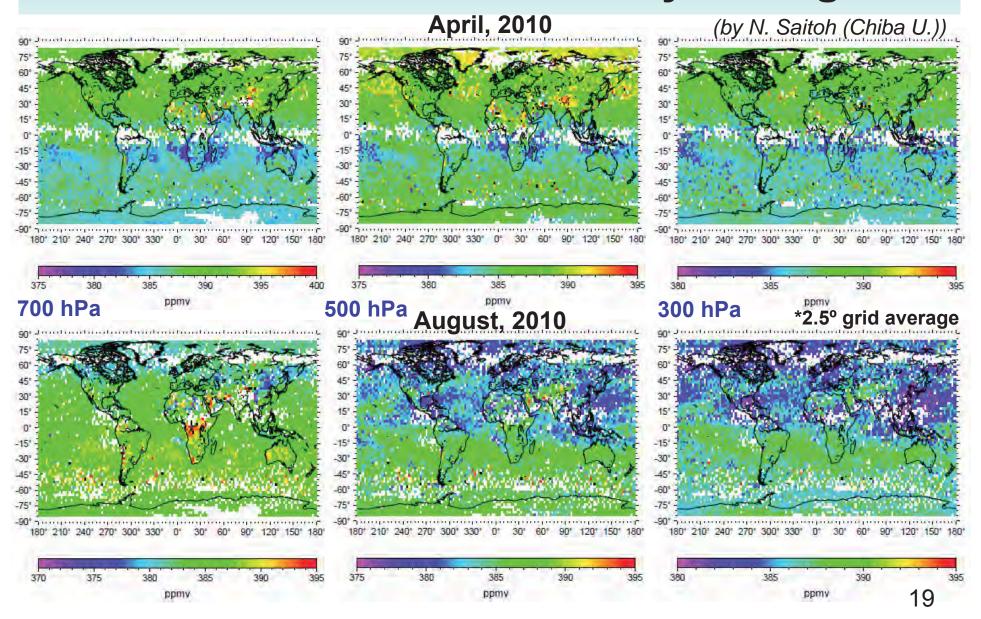
in NIES (Tsukuba)

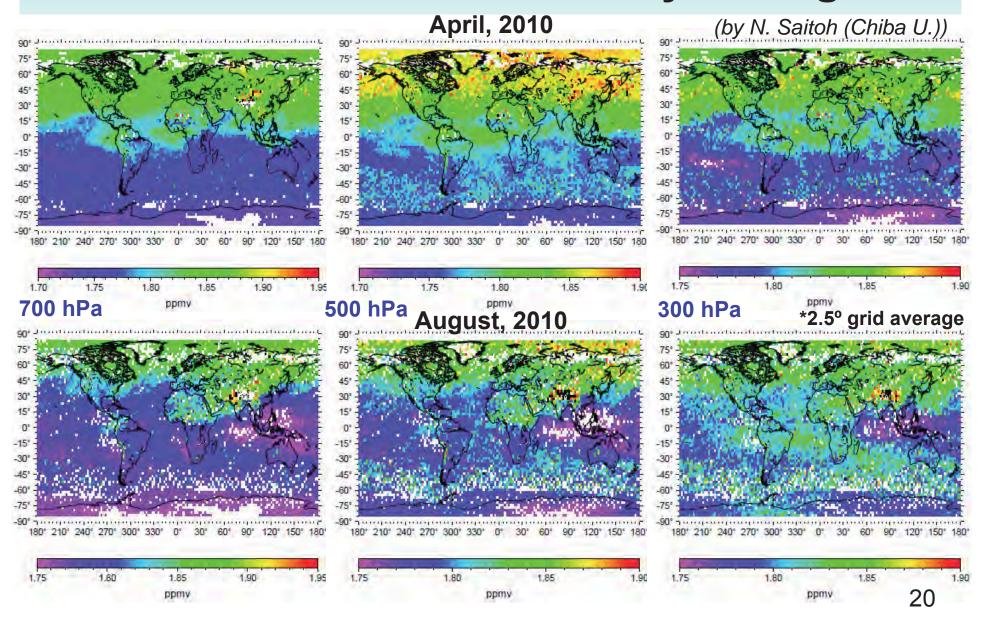

Tsukuba, Rikubetsu, Saga

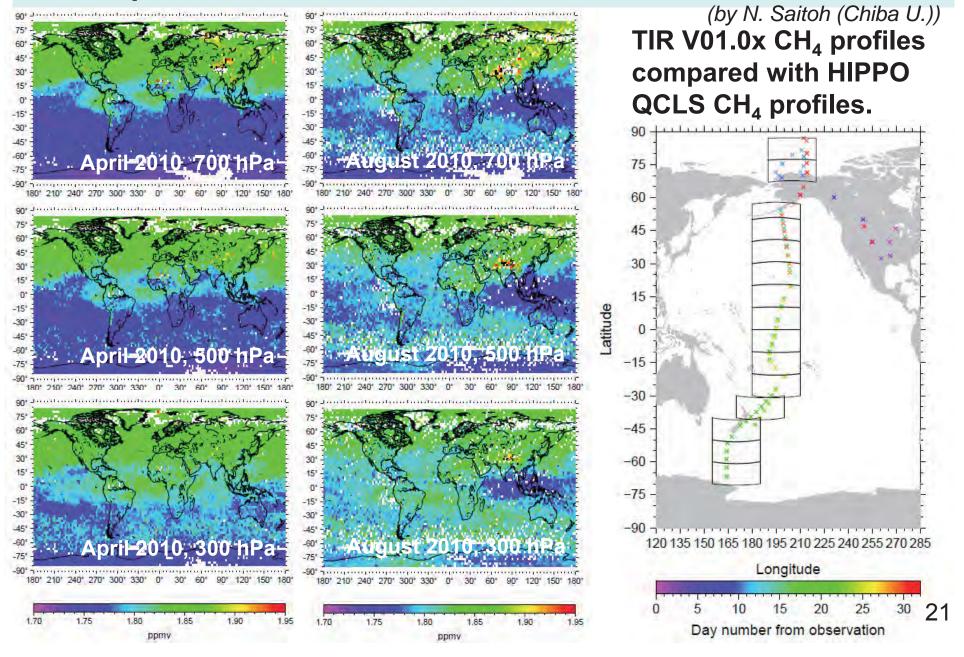
A worldwide network of ground-based FTS (TCCON; over 20 sites in the world)


Validation of GOSAT (TANSO-FTS SWIR) Level 2 Data with TCCON data (Ver.02.21)

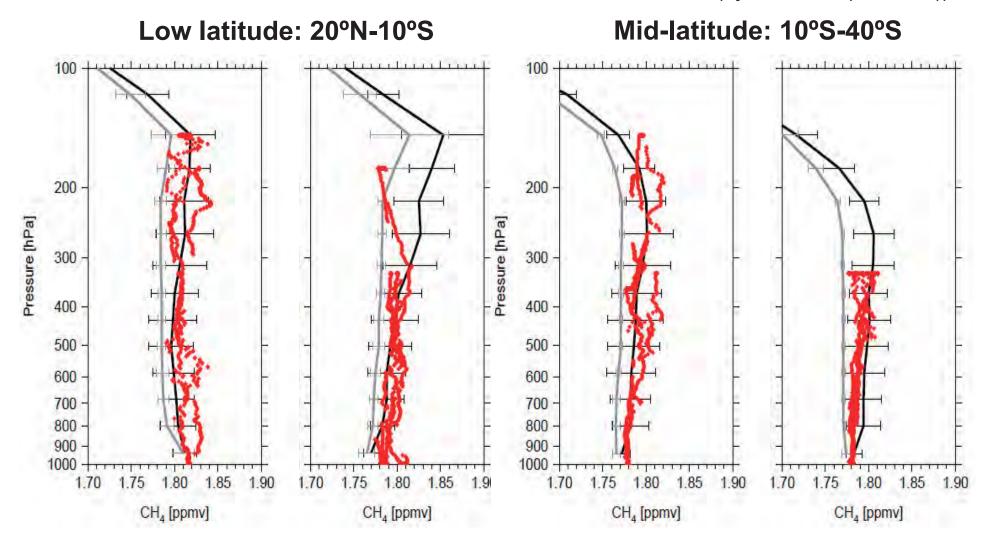
(Apr. 2009 – May 2014, N > 1800, as of March 2015)


(cf., Yoshida, et al. (2013) amt-6-1533-2013)


- Slightly lower values (negative biases) of GOSAT
- Standard Deviation is lower than 1 %, respectively

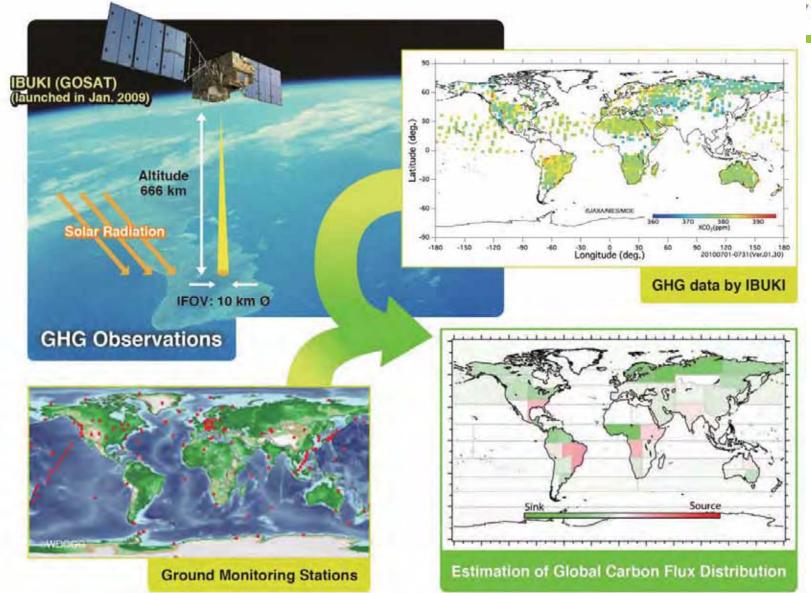

TIR L2 V01.00 CO₂ monthly average

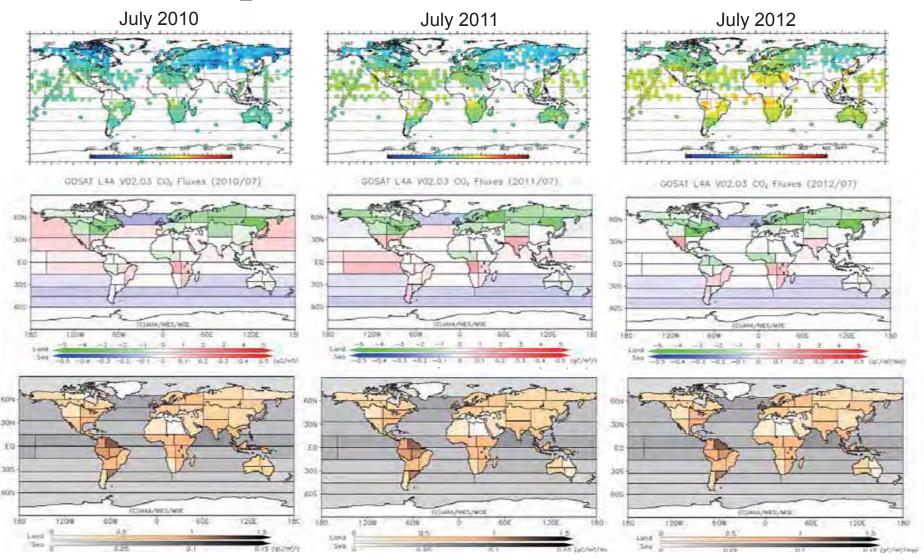
TIR L2 V01.00 CH₄ monthly average



CH₄ profiles from GOSAT/TIR (V01.0x)

TIR V01.0x CH₄ vs. HIPPO5 QCLS CH₄


(by N. Saitoh (Chiba U.))


a priori CH₄ — TIR CH₄ V01.0x HIPPO CH₄

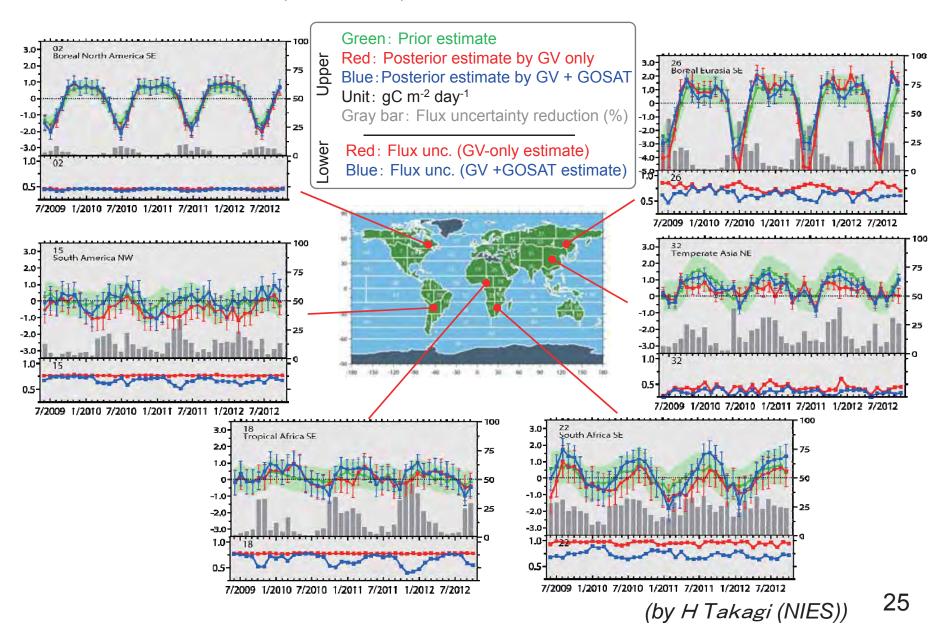
Contribution of satellite data to carbon flux

Monthly CO₂ Flux Estimates and Uncertainties

Top: monthly-mean CO₂ data (input to flux estimation)

Squares: GOSAT XCO_2 gridded to $5^{\circ} \times 5^{\circ}$ cells

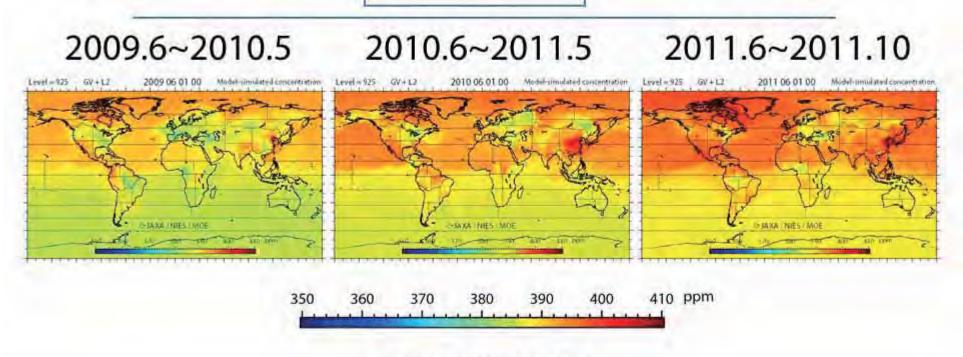
Circles: GLOBALVIEW data (212 sites)


Middle: Monthly flux estimate (GOSAT Level 4A CO₂),

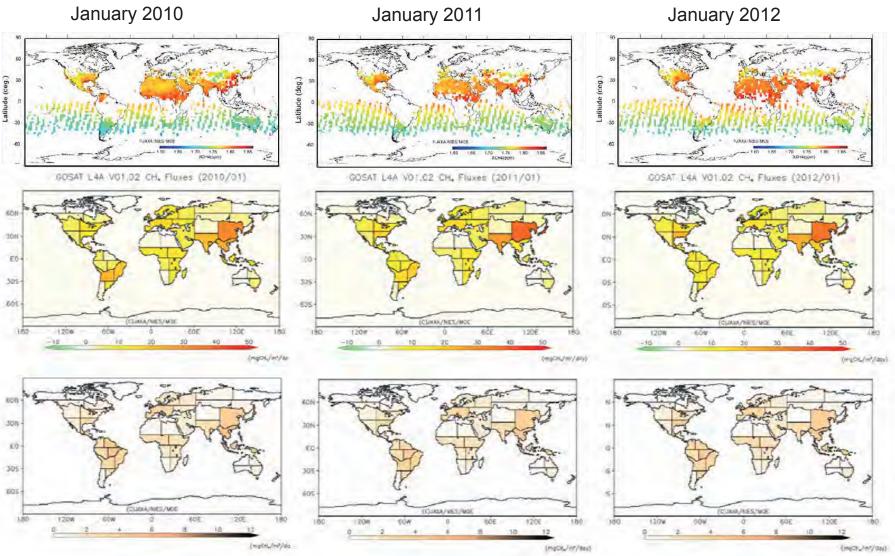
24

Bottom: Flux uncertainty

Time series of monthly regional flux estimates


Jun. 2009 – Oct. 2012 (41 months)

GOSAT L4B Data Product Model-simulated concentration

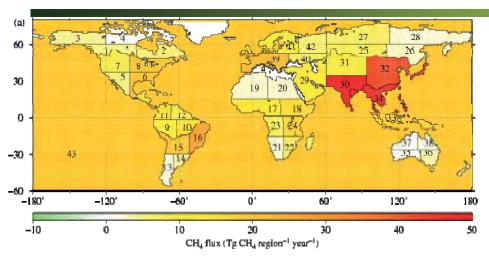

 $(6hr-step, 0.925 sigma-level, 2.5° \times 2.5° grid)$

MM DD HH 06 01 00

©JAXA/NIES/MOE

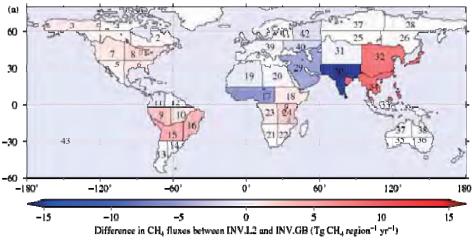
Monthly CH₄ Flux Estimates and Uncertainties

Top: monthly-mean GOSAT XCH₄ data gridded to 2.5° × 2.5° mesh (input to flux estimation)


Middle: Monthly flux estimates (GOSAT Level 4A CH₄)

Bottom: Flux uncertainty

* Anthropogenic, natural, and biomass burning emissions are estimated separately for each region.


The estimated annual CH₄ flux using GOSAT data

The methane emissions in East Asia and the Southeast Asia region (Region No. 30, 32, and 34) are significantly high.

Estimation of the annual flux in each region

Change in the annual flux of methane per region

The methane emissions from the Asian region (Region No.32 and 34) and the southern subtropical areas of South America (No.9, 10, 15, and 16) and Africa (No. 24) became pronouncedly greater.

GOSAT-2 in Space

CDR: May 2015

TRR: August 2016

PSR: May 2017

Expected to be launched in early 2018

(by T. Matsunaga (NIES))

Quick Overview of GOSAT and GOSAT-2

	GOSAT Specifications	GOSAT-2 Requirements			
Launch year and life time	Jan. 2009, 5 years	FY2017, 5 years			
Satellite (Main body size, mass, power)	3.7 x 1.8 x 2.0 m, 1750kg, 3.8KW (EOL)	5.3 x 2.0 x 2.8 m, <2000kg, 5.0KW			
Orbit (Type, altitude, repeat cycle, equator crossing time)	Sun synchronous, 666 km, 3 days, 13:00	Sun synchronous, 613 km, 6 days, 13:00±15 min			
Target gases	CO ₂ , CH ₄ , O ₂ , O ₃ , H ₂ O	CO ₂ , CH ₄ , O ₂ , O ₃ , H ₂ O, CO			
Fourier Transform Spectrometer (Spectral coverage and IFOV)	Band 1: 0.76 – 0.78 μm Band 2: 1.56 – 1.72 μm Band 3: 1.92 – 2.08 μm Band 4: 5.6 – 14.3 μm	Band 1: 0.75 – 0.77 μm Band 2: 1.56 – 1.69 μm Band 3: 1.92 – 2.33 μm Band 4: 5.5 – 8.4 μm Band 5: 8.4 – 14.3 μm IFOV = 9.7 kmφ			
Cloud and Aerosol Imager (Viewing geometry, band center wavelength, spatial resolution, and swath)	Nadir B1 = 380 nm B2 = 674 nm B3 = 870 nm B4 = 1600 nm	B1-5: forward, B6-10:backward B1 = 343 nm B6 = 380 nm B2 = 443 nm B7 = 550 nm B3 = 674 nm B8 = 674 nm B4 = 869 nm B9 = 869 nm B5 = 1630 nm B10= 1630 nm B1-B4, B6-B9=460 m / 920 km			
	B4 = 1.5 km / 750 km	B5, B10 = 920 km / 920 km			
New features of GOSAT-2 FTS-2	Intelligent pointing using FTS-2 FOV camera, fully programmable (target mode) observation, extended AT pointing angle range, and improved SNR.				

(by T. Matsunaga (NIES))

Concluding Remarks

- ◆ Global distributions of greenhouse gases (GHGs) such as CO₂ and CH₄ has been measured by GOSAT and analyzed in sufficient precision (less than 1%).
- ◆ These data are used to estimate regional monthly CO₂ and CH₄ fluxes, and also used to detect GHG's temporal and spatial changes.
- Most of the GOSAT data products have been released to the general users.
- GOSAT has been operating more than six years, and now in the extended operation period. It is strongly expected that GOSAT will survive for several more years. Long term GOSAT data will contribute to GHG transport and carbon cycle sciences.