Improved pointing knowledge for SCIAMACHY

K. Bramstedt¹, M. Gottwald², S. Noël¹, T. C. Stone³, H. Bovensmann¹, J. P. Burrows¹

¹ Inst. of Environmental Physics, University of Bremen (IUP), e-mail: klaus.bramstedt@iup.physik.uni-bremen.de ³ U.S. Geological Survey, Flagstaff, AZ, USA ² German Aerospace Center, Remote Sensing Technology Institute (DLR-IMF), Weßling, Germany

Satellite measurements in limb and occultation provide altitude resolved information about Earth's atmosphere. SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) on-board ESA's Envisat (2002-2012) is a passive remote sensing moderate-resolution imaging UV-Vis-NIR spectrometer (nadir / limb / occultation).

Precise pointing knowledge is needed, because the pointing defines the viewing direction and therefore the observed tangent height and altitudes of the retrieved profiles.

3 Solar occultation elevation / azimuth offsets

5 Sub–solar elevation angle offset

Sun via subsolar port, elevation mirror only. Mean elevation angle offset: 3 mdeg.

6.1 Mispointing analysis

Platform misalignment:

- SCIAMACHY may not exactly aligned with the platform.
- Misalignment is described with
- pitch / roll / yaw mispointing angles.
- ► First set determined in 2007 (Gottwald et. al).
- Large horizontal offset! ► Seasonal cycle: \pm 114 m.

► Overall mean: 4955 m. ► Amplit. seasonal cycle: 127 m.

Sun Follower (SF) target:

moon

• Gravity center of brightness!

► This is not the center of the

Note: Remaining uncertainty of tangent height for individual solar occultation measurements is $\pm 26 \, m!$

- Monitoring measurement.
- ► Equator region.
- Monthly calibration.
- Lunar occultation:
 - Southern
 - hemisphere. ► Once per orbit, if moon is in FOV
 - ▶ 1 week per month
 - $\sim \sim 6$ month per year

2.2 Angles and pointing

- Elevation
- ► Perpendicular to the horizon, positive downwards.
- Azimuth
- ► In plane parallel to horizon.

Platform mispointing angles are offsets to

Pitch / Roll / Yaw

2.3 SCIAMACHY's scanner unit

Sketch optical parts:

► Telescope: Further

vaw

4.1 Moon as target

Lunar disk is highly variable:

► Lunar phase.

USGS

Robotic Lunar

- Lunar libration:
- Longitude: orbit eccentricity. ► Latitude: axis inclination. Task:
- Determine for each measurement the center of brightness!
- Simulate SF adjustment on appropriate reference images.
- Libration and phase at measurement time and for the reference image must closely match!

4.2 Lunar reference images from ROLO

- ▶ 6 years of automatic lunar images (1997 2003).
- Absolutely calibrated instrument, here 550 nm channel is used.
- Similar to SCIAMACHY's sun follower sensitivity (\sim 500 nm).

- Moon image is mapped onto the 4 quadrants of the SF.
- After adjustment, the 4 quadrants

Scanner offsets:

- Scan mirrors zero positions might have an offset.
- ► ASM mirror offset:
 - ► Rotation around yaw axis!
 - ► Not distinguishable from yaw mispointing ignored.
- ESM mirror offset, corresponds
 - ► to roll offset for nadir/subsolar,
 - ► to pitch in limb/occultation (ASM mirror reflection!).
- \Rightarrow Four mispointing parameters: pitch, roll, yaw, ESM offset.
- Non-linear Levenberg-Marquad fit: minimize offsets in elevation and azimuth.
- ▶ 15 lunar occultations with best matches to reference images.
- Selected close in time: 14 solar occult. + 10 subsolar measurements.

6.2 Fit results

- Elevation angle offset (EAO) minimized for all measurement types.
- ► Note: Solar and lunar EAO changed in different direction! lunar solar • offset: OLD 120 F

Observatory (ROLO)

4.3 SF adjustment simulation:

2.4 Measurement sequences

receive same amount of light.

- Simulated using ROLO reference images.
- Thick small cross: center of moon.
- Found center of brightness is marked by the cross-hair. \Rightarrow Lunar Target!
- ► 5 ROLO images used here (more will be added).
- Limited to full moon.
- Close match of phase + libration needed!
- Limited number of lunar measurement usable!

4.4 Lunar Angle Offsets

#orbit

Azimuth angle offset (AAO) minimized for all measurement types. ► Large AAO offset removed.

6.3 Summary fitted mispointing parameters:

		Old(2007)	New(fit)	error
		[mdeg]	[mdeg]	[mdeg]
Ĭ	oitch	-25.4	-12.7	\pm 1.6
	roll	-18.3	-26.6	\pm 1.2
	yaw	-218.5	-124.2	± 0.9
es	smpos	0.0	-11.2	\pm 1.4

Main effects of mispointing change:

- Yaw: \Rightarrow Azimuth offset fixed!
- ► Roll: Fixes elevation offset with opposite signs for occultation: ► Solar occ: \sim -30° azim. angle
- Lunar occ: \sim +40° azim. angle
- Pitch: Overall adjustment of elevation offset.

Preliminary results!

- Extend number of ROLO images (better lunar statistics).
- Preliminary set of improved mispointing parameters fitted. ► Foreseen for use in the SCIAMACHY Level 0 - 1 processor Version 9. Improved geolocation for all SCIAMACHY measurements.

2.5 Mispointing determination

Calculated viewing direction:

- Calculate elevation and azimuth of target, using attitude knowledge!
- \rightarrow product geolocation!

Difference calculated – measured viewing direction is mispointing.

Measuring the viewing direction:

Scan over solar disk:

- Fit maximum intensity to get solar center.
 - Solar occultation (elevation).
 - Sub–solar (elevation).

- Only best matches with reference images (colors indicate images)!
- Larger cross \Rightarrow better match.
- ► Grey points: solar occultation offsets for comparison.
- Preliminary results! More reference images needed for better statistics.

Selected references

Quality Working Group (SQWG) and by the University of Bremen.

Bramstedt et al, Precise pointing knowledge for SCIAMACHY solar occultation measurements, Atmos. Meas. Tech., 5, 2867-2880, 2012. Gottwald et al, The Status of the SCIAMACHY Line-of-Sight Pointing Knowledge, Proc. ESA Living Planet Symposium, Bergen, 2010. Bovensmann et al, SCIAMACHY: Mission objectives and measurement modes, JAS, 1999 Burrows et al, SCIAMACHY - Scanning Imaging Absorption Spectrometer for Atmospheric Chartography.", ACTA ASTRONAUTICA, 1995 SCIAMACHY is a national contribution to the ESA ENVISAT project, funded by Germany, The Netherlands, and Belgium. SCIAMACHY Level 1 data have been provided by ESA. This work has been funded by DLR-Bonn, by ESA in the framework of the SCIAMACHY

Measured viewing direction:

► Get mirror positions, when

Translate mirror position to

elevation and azimuth.

Sun Follower (SF) adjusts

► Solar occ. (azimuth)

towards brightness center.

Lunar occ. (elevation + azimuth)

Pointing to sun / moon:

SCIAMACHY points to target.