

3D distribution of a major desert dust outbreak over East Asia in March 2008 from IASI

Juan Cuesta¹, Maxim Eremenko¹, Cyrille Flamant², Gaëlle Dufour¹, Michael Höpfner³, Johannes Orphal³, Benoît Laurent¹, Gilles Bergametti¹ and Daniel Zhou⁴

[Cuesta et al., JGR 2015 (in press)]

Scientific motivation

→Impact of coarse aerosols on the environment which are closely related to their 3D distribution : Air quality, radiative forcing, deposition, etc.

1) 3D distribution of aerosol layers

Desert dust

2) Aerosol optical depth (thermal IR)

3) Daily observation (day and night)

4) Over land and over ocean

AEROIASI

AEROIASI: a new retrieval of the 3D distribution of coarse aerosols from IASI

Vertical profiles of aerosol extinction at 10 µm for each cloud-free IASI pixel over land and ocean → 3D distribution of coarse aerosols & AOD_{10µm}

[Cuesta et al., JGR 2015 (in press)]

Validation of **Aerosol vertical profiles**: **AEROIASI vs. CALIOP spaceborne Lidar (1/2)**

Transect of a dense elevated dust plume over the Yellow sea

Validation of **Aerosol vertical profiles**: **AEROIASI vs.** CALIOP spaceborne Lidar (2/2)

Transect of dense low-levels dust plumes over Central China

Validation of **Aerosol Optical Depth** (AOD): **AEROIASI vs. AERONET ground-based network**

Daily comparison of AEROIASI with the AOD_{coarse} over 13 sites between March-September 2008

- ✓ Negligible mean bias : <1%
- ✓ Good correlation: R=0.76

Validation of horizontal distribution of AOD Coarse AOD from AEROIASI vs. MODIS (Fine+Coarse)

A major dust outbreak over East Asia in March 2008 from the Gobi desert

Dust uplift over the Gobi desert by strong winds, associated to an extra-tropical cyclone

29 February 2008

ERAI windspeeds at 2 m agl

CHIMERE model AOD

3D distribution of dust from AEROIASI

3D distribution of dust from AEROIASI

AEROIASI Aerosol extinction (km⁻¹) at 10 μ m

3D distribution of dust from AEROIASI

AEROIASI Aerosol extinction (km⁻¹) at 10 μ m

Dust distribution at the SURFACE from AEROIASI vs. Horizontal visibility

Main dust plume: AEROIASI vs. CHIMERE model

A groundbased lidar in Japan is in agreement with AEROIASI

Summary

- ✓ AEROIASI: A new approach to observe the 3D distribution of coarse aerosols using IASI spectra
 - ✓ AEROIASI derives aerosol extinction profiles for most IASI pixels (95% of cloud-free pixels) over land and ocean, day and night. AOD and dust layer heights are also calculated.
 → 3D daily evolution of dust plumes over East Asia
 - ✓ Good results from validation for
 - > Aerosol profiles vs. CALIPSO lidar: very similar structures
 - > AOD vs. AERONET: weak bias and good correlation
 - Aerosol extinction at the surface vs. Visibility
 - ➢ Horizontal structure of plumes vs. MODIS → synergism
 - AEROIASI highlights strengths and weaknesses of the CHIMERE model 3D distribution
 - On-going work: AEROIASI over the Sahara and other regions
 [Cuesta et al., JGR 2015 (in press)]

Acknowledgements

