Tropical drivers of the Atmospheric Growth Rate 2011-2010

NASA

NASA Carbon Monitoring System

http://carbon.nasa.gov

CMS team:

Kevin Bowman, Junjie Liu, Nicholas Parazoo, Meemong Lee, Dimitris Menemenlis, Michelle Gierach Holger Brix, Joshua Fisher, Christian Frankenberg

Jet Propulsion Laboratory, California Institute of Technology

Joint Institute for Regional Earth System Science and Technology, University of California, Los Angeles

James Collatz, Zhengxin Zhu

NASA Goddard Space Flight Center

Chris Hill, Mick Follows, Stephanie Dutkiewicz

MIT

Kevin Gurney

Arizona State University

Daven Henze and Nicholas Bousserez

University of Colorado, Boulder

Drought and the Tropical North Atlantic

The tropical North Atlantic experienced and El Nino 4.0 a record-breaking SST anomaly >1.5°C.

Consequence of a strong Central-Pacific "Modoki" El Nino amplified by a strong and persistent negative phase of the North Atlantic Oscillation (NAO) (Hu *et al,* J. Climate 2011)

Shifted ITCZ north leading to a dramatic Amazonian drought (Lewis *et al*, Science, 2010)

CMS-Flux Framework (Liu et al, Tellus, 2013) "Top-down"

NASA Changes in total flux 2011-2010

PgC

 -0.050 -0.025 $\overline{0}$ 0.025 0.050

Based upon ACOS v3.5 Based upon ACOS v3.5

Cloud Canopy: Brazilian Challenge

Amazon is a critical but challenging region for satellite observations because of persistent cloud cover

Adjoint analysis (Liu, Bowman, and Henze, JGR 2015) shows that mid-latitude S. America obs. can help infer Amazonian fluxes:

- The fluxes over Amazonia contribute more than 40% to the X_{CO2} variability over mid-lat. S. America (rectangle area) due to the persistent wind direction (Fig. 2).
- The impact of GOSAT over mid-lat. S. America on Amazonia flux estimation is between 30% and 59% of full observation impact (right figure).

Annual total number of good quality nadir ACOS-GOSAT v3.5 obs at 4° x 5° resolution

700 hPa wind vector and sensitivity of X_{cO2} in S-S- America (rectangle) at Jan 31 to surface fluxes on Jan 23rd

The lower bound impact of GOSAT X_{co2} within S-S-America **(rectangle) on local and nonlocal flux estimation**

Comparison against aircraft obs.

• Aircraft spirals (from Gatti *et al.*) taken twice per month from 2010-2011.

NASA

- The mean posterior $CO₂$ bias is less than 1 ppm above 1 km.
- The bias in posterior $CO₂$ is smaller than prior $CO₂$ for TAB, ALF, RBA, but not SAN
- TAB region has strongest impact on midlatitude S. American obs.

Flux Decomposition Net flux into the atmosphere is positive

 $F^{T}(x, y, t) = F_{F} + F_{O} + F_{BB} - F_{NEP} + F_{chem}$

Fossil Fuel Ocean Biomass burning NEP Chemical Source

The total flux inferred from CMS-Flux can be decomposed into a sum of terms representing key processes within the carbon cycle.

The interannual change in total flux can be similarly decomposed:

$$
\delta F_{2011-2010}^{} \uparrow (x,y,t) = \delta F_{\scriptscriptstyle F}^{} + \delta F_{\scriptscriptstyle O}^{} + \delta F_{\scriptscriptstyle BB}^{} - \delta F_{\scriptscriptstyle NEP}^{} + \delta F_{\scriptscriptstyle chem}^{}
$$

Strategy: Use multiple satellite observations to constrain individual terms and infer the others as a residual.

Respiration: combustion

Measurements of Pollution in the Atmosphere **MOPIT**

- Carbon monoxide is a by-product of incomplete combustion.
- MOPITT provides CO verticals with near surface sensitivity.
- CMS-Flux estimates CO from MOPITT and converts to $CO₂$
- $CO₂$ from biomass burning is calculated from CO/CO2 ratios (Andreae and Merlet, GBC, 2001)
- Emission factors are a function of dry mass (given) and burning efficiency, which is a function of plant function

Emission factors

uncertainties underway

δBB (2011-2010)

Flux decomposition: NEP

 $\delta F_{2011-2010}^{\dagger}(x,y,t) = \delta F_{F} + \delta F_{O} + \delta F_{BB} - \delta F_{NEP} + \delta F_{chem}$

 -0.050

 -0.075

Net flux into the atmosphere is positive

Net ecosystem production (NEP) can be inferred as a residual from the posterior total flux, biomass burning, fossil fuel, and chemical production.

The inferred NEP was greater in 2011 in Africa, Southeast Asia, and Australia while lower in Brazil and Mexico.

Flux (PgC)

 $\mathbf{0}$

0.025

0.050

 -0.025

GPP inferred from solar induced fluorescence NASA

Optimal estimation provides a framework to determine GPP that accounts for uncertainty in the fluorescence, prior uncertainty in GPP, satellite coverage and timing.

$$
\hat{\mathbf{x}} = \min_{\mathbf{x}} C(\mathbf{x}) = \min(\|\mathbf{y} - \mathbf{F}(\mathbf{x})\|_{\mathbf{S}_n^{-1}}^2 + \|\mathbf{x} - \mathbf{x}_a\|_{\mathbf{S}_n^{-1}}^2)
$$

x*a*=mean Trendy GPP **y:** GOSAT SIF at time {*ti* } **F**(**x**): Observation operator: GPP to GOSAT overpass

$$
\hat{\mathbf{S}} = (\mathbf{K}^\top \mathbf{S}_n^{-1} \mathbf{K} + \mathbf{S}_a^{-1})^{-1}
$$

S_n: Error in GOSAT SIF, **S**_a:Ensemble Trendy spread Parazoo et al, 2013

GPP-Solar induced fluorescence

2011-2010 GPP Change 50 0 -50 Dr -150 -100 -50 50 100 150 $\mathbf 0$ Flux (PgC) -0.075 -0.050 -0.025 0.025 0.050 0.075 $\mathbf{0}$

- Solar induced fluorescence (SIF) is a direct measure of photosynthetic activity (e.g., Porcar-Castell *et al,* 2014)
- Parazoo *et al*, GCB, 2014 introduced an optimal estimation method for GPP balancing satellite SIF and carbon cycle models (TRENDY and Casa-GFED)
- Brazil shows increased productivity in 2011

Brazil

 $F^{\uparrow}(x,y,t) = F_{F} + F_{O} + F_{BB} + (R - GPP_{SIF}) + F_{chem}$
Net flux into the atmosphere is positive

- Weak total flux tendency and strong biomass burning tendency implies negative NEP.
- GPP is positive \rightarrow R must be higher to compensate.
- $GPP \rightarrow$ fast carbon pool?
- $R \rightarrow$ slow carbon pool?
	- Mortality (Saatchi et al, PNAS, 2013)?
	- High precipitation in 2011 could stimulate response

 $-F_{NEP}$

Complex global carbon cycle response to historic Central Pacific El Nino

- Globally, change in CO2 growth rate (GR) driven by biomass burning (~50%)
	- Brazil was primary contributor
- Global NEP (30% CO2 GR) was driven by GPP
	- Implies fast carbon pools readjusted.
- Brazilian NEP was driven by respiration
	- Slow carbon pools possibly impacted
- Increased Ocean uptake accounts for 20% CO2 GR
	- Climatologies, e.g., Takahashi atlas, would miss process

More frequent extreme events like the 2010 mega-drought on Brazil could favor respiration processes, which could accelerate the CO2 growth rate.

Long-term observations of CO2, CO, and SIF from OCO-2, CrIS, TROPOMI will help disentangle slow and fast carbon pools and their response to climate. See Dejian Fu *et al* **poster**

Backup

Atmospheric CO2 Growth Rate

The atmospheric growth rate of CO2 in 2010 was about 33% higher than 2011. Why?

> What are the processes driving those differences? What are the spatial drivers of the CO2 growth rate?

Covariation with GPP

Frankenberg *et al*, 2011

Comparisons with MPI-BGC point to the proportionality of GPP to fluorescence.

Flux decomposition

 $F^{T}(x, y, t) = F_{F} + F_{O} + F_{BB} - F_{NEP} + F_{chem}$

Net flux into the atmosphere is positive

Atmospheric growth rate was driven by changes in tropical flux.

Tropical net ecosystem production (NEP) change was offset by reductions in the NH.

Biomass burning dropped in both hemispheres.

The combination of reduced biomass burning and increased NEP reduced the atmospheric growth rate in 2011 relative to 2010.

What drove NEP?

Regional drivers

Link between tropical temperatures and $CO₂$ growth rate

Wang et al, 2013 (PNAS) showed that 1 °C tropical temperature anomaly leads to a 3.5 ± 0.6 PgC yr⁻¹ CO2 growth rate anomaly (1959- 2011) ($r^2 \approx 0.5$).

Cox et al, 2013 (Nature) used that same relationship to apply an observational constraint on carbon-cycle climate feedback parameter-> γ (GtC K⁻¹) in C⁴MIP models

Spatially explicit drivers of atmospheric CO2 growth rate and ancillary species could provide better process scale constraints

GPP-Solar induced fluorescence

$$
C_{\beta,j} = \frac{1}{2} [\mathbf{y}_j - \mathbf{f}_j(\beta_j)]^T \mathbf{R}_j^{-1} [\mathbf{y}_j - \mathbf{f}_j(\beta_j)] + \frac{1}{2} [\beta_j - \beta_b]^T P_j^{-1} [\beta_j - \beta_b]
$$

f(β)=GPP(x,y,t) = β_{GPP} (x,y,t) * GPP_{pr}(x,y,t) *y:* Inferred GPP (Fluorescence scaled to MPI) *R:* GPP Uncertainty (Measurement Error) *P*: Prior Uncertainty (TRENDY)

β^b Prior Scale Factor (CASA or JULES)

- Solar induced fluorescence is a direct measure of photosynthetic activity (e.g., Porcar-Castell *et al,* 2014)
- Parazoo *et al*, GCB, 2014 developed an inverse method to estimate GPP from satellite SIF and TRENDY models

