

Global Atomic Oxygen Abundance in the Upper Mesosphere and Lower Thermosphere as Measured by SCIAMACHY

M. Kaufmann, Y. Zhu, M. Ern, and M. Riese

Research Centre Jülich, Germany

UV-VIS-NIR Nightsky Spectrum

Spectra recorded by GLO during the flight of STS-53, December 1992

Some remarks about the mesosphere

- Marks end of fully mixed atmosphere
- Highly dynamic region with marginal dynamical stability
 - waves break and turbulence structures are created
 - Wave amplitudes are largest (GWs, tides)
- Interface region between space and lower atmosphere
- Important Species:
 - O, H, O₃, NO, CO₂, H₂O, OH (O₂*, O*, OH*)
 - Photochemically driven; diurnal variations of many species
 - Ions

Importance of Atomic Oxygen on 15 um Temperature Retrieval

MIPAS/SABER Temperature Errors Due to Atomic Oxygen

Altitude	T-Uncertainty
70 km	1 K
80 km	1 K
90 km	2 K
100 km	7 K
110 km	19 K

Courtesy of A. Kutepov, 2015

-> Temperature amplitudes due to tides / GWs highly affected by [O]

-> Simultaneous measurement (and retrieval) of T, [O] (and [CO2]) very important

Retrieval of CO₂, O₃ and NO depends on atomic oxygen (a-priori) knowledge as well

m.kaufmann@fz-juelich.de

How to measure atomic oxygen globally?

fine structure emissions at 63um and 147 um (Grossmann et al., 2001) (> 120 km) (*

SCIAMACHY on Envisat

Spatio-temporal distribution of SCIAMACHY nighttime limb data

This pattern is caused by solar illumination and various calibration measurements on the night side of the satellite orbit

JÜLICH

Latitudinal distribution of atomic oxygen densities

- Max @ 95 km
- [O](equinox) > [O](solstice)
- Max @ mid latitudes
- tides

Latitudinal distribution of atomic oxygen densities

SCIAMACHY

MSIS

m.kaufmann@fz-juelich.de

Spatio-temporal distribution of SCIAMACHY data

This pattern is caused by solar illumination and various calibration measurements on the night side of the satellite orbit

m.kaufmann@fz-juelich.de

11 yr solar max-min difference, radiances

11 yr solar max-min difference, atomic oxygen density

11 yr solar max-min difference: atomic oxygen & total density

m.kaufmann@fz-juelich.de

Slide 15

Summary

SCIAMACHY data allows to derive a global dataset of atomic oxygen in the mesopause region

Absolute values:

- similar to WINDII and OSIRIS measurements
- SABER data is significantly larger (up to 50%)
- models differ up to 40% (smaller or larger)

11 yr solar cycle dependence:

- 7-20%, altitude dependent
- larger than model predictions

models likely underestimate solar cycle in total density