Improving S5P NO₂ retrievals

ESA ATMOS 2015 Heraklion June 11, 2015

Andreas Richter, A. Hilboll, and J. P. Burrows

Institute of Environmental Physics and Institute of Remote Sensing University of Bremen

Introduction

- Current instruments provide excellent coverage and spatial detail for NO₂
- They will soon be followed by the TROPOMI / S5P instrument which promises even better performance and spatial resolution

S5P tropospheric NO_2 retrieval is state of the art – so what's left to improve?

GOME-2A NO₂ above China

- Monthly GOME-2 tropospheric NO₂ data are missing most of the large values
- These were removed by cloud filtering as aerosol was so thick that data were classified as partially cloudy

Is it only Aerosols?

- Even without cloud screening, there are data gaps over pollution hot spots on some days
- This is due to quality checking as these fits are poor

Why are the fits poorer at strong pollution?

- There are large and clearly structured residuals in fits over pollution hot spots
- This is not random noise!

 Comparison to NO₂ cross-sections shows that scaling of NO₂ should change over fitting window

Wavelength dependence of Air Mass Factor

- For constant albedo, AMF of NO₂ layer close to the surface increases with wavelength in a Rayleigh atmosphere
- For a surface layer, this can be a significant effect
- With radiative transfer modelling and a formal inversion, this should provide information on the altitude of the NO₂

Empirical Approach for $NO_2(\lambda)$

Is this the only problem at large NO₂ columns?

- One of the main DOAS assumptions is, that the light path enhancement (AMF) for a trace gas is independent of its column amount
- For strong absorbers (O₃, SO₂, IR gases) this approximation is not good enough and the change of sensitivity with wavelength needs to be accounted in the fit ("modified" DOAS)
- NO₂ is generally considered to be a weak absorber, but is that still true for very polluted scenarios?

AMF dependence on NO₂ column

- Up to a vertical column of about 1x10¹⁶ molec cm⁻², small dependence of AMF on NO₂ amount
- For larger columns, the AMF decreases and NO₂ absorption structures appear

AMF dependence on NO₂ column

A = 2%0.90 Expected 0.85 $SZA = 70^{\circ}$ $SZA = 80^{\circ}$ OS 0.80 0.75 0.70 Batio 0.65 0.60 0 2 16 18 4 10 12 20 6 NO₂ SC fitted [10¹⁶ molec cm⁻²] NO₂ Slant Column Saturation Albedo = 0.10 1.00 SZA = 0.95 SZA = 40SZA = 600.90 SZA = 70 й ш 0.85 SZA = 80 US 0.80 0.75 Ratio 0.70 = 10% Δ 0.65 0.60 8 10 12 14 16 18 20 0 NO₂ SC fitted [10¹⁶ molec cm⁻²]

NO₂ Slant Column Saturation Albedo = 0.02

SZA = 20

 $SZA = 40^{\circ}$

 $SZA = 60^{\circ}$

1.00

0.95

- Effect on DOAS fit on synthetic data is ۲ larger than on AMF alone as both smaller AMF and spectral structures reduce NO₂ columns
- Effect increases with SZA ٠
- Even at a column of 5×10^{16} molec cm², the error is > 10% •
- Effect decreases with increasing albedo •

NO₂ saturation on real GOME-2A data

- Many measurements above China are in the saturation range
- Corrections of 5% 40% need to be applied to individual pixels
- In monthly averages, the effect is still > 10% in January and December
- Real effect is even larger as cloud effects reduce columns but not saturation effects

NO₂ saturation on real GOME-2A data

- Many measurements above China are in the saturation range
- Corrections of 5% 40% need to be applied to individual pixels
- In monthly averages, the effect is still > 10% in January and December
- Real effect is even larger as cloud effects reduce columns but not saturation effects

Results Empirical Approach NO₂(λ): GOME-2A

- The empirical NO₂ AMF proxy is found over the pollution hotspot in China
- It is not found at other locations where the NO₂ slant column is large
- There is some noise in the retrieval of the proxy

Is there more than China? GOME-2

• Fit is improved by AMF proxy everywhere over pollution hotspots

Is there more than China? GOME-2

• Fit is improved by AMF proxy everywhere over pollution hotspots

Comparison to NO₂ columns: **GOME-2**

- Overall pattern similar to NO₂ map
- Differences in distributions of maxima
- Artefacts over water
- noise

Impact of Clouds: GOME-2

Andreas.Richter@iup.physik.uni-bremen.de

- On many days in
 winter, very large NO₂
 slant columns are
 observed over Europe
 and the US
- The NO₂ AMF proxy picks up only very few of these signals

Impact of Clouds: GOME-2

Universität Bremen

Andreas.Richter@iup.physik.uni-bremen.de

- On many days in winter, very large NO₂ slant columns are observed over Europe and the US
- The NO₂ AMF proxy picks up only very few of these signals
- This is linked to the fact that most of the events are related to cloudy scenes or snow on the surface, resulting in small wavelength dependence

18

Synthetic data:

- Rayleigh atmosphere
- Constant albedo
- NO₂ layer in different altitudes
- DOAS fit on spectra
- NO₂ temperature dependence corrected by using 2 NO₂ x-sections
- AMF proxy included
- Ratio of AMF proxy / NO₂ to normalise signal
- Ratio of AMF proxy and NO₂ has strong dependence on NO₂ layer height
- Dependence on albedo is small between 3% and 7%

Sensitivity Study NO₂(λ) / NO₂: SZA

- Effect varies with SZA; larger effect at larger SZA
- At large SZA, AMF proxy also found for high NO₂
- Dependence on albedo is small between 3% and 7%

Sensitivity Study $NO_2(\lambda) / NO_2$: Bright Surfaces

- Increasing albedo reduces effect as expected for reduced importance of Rayleigh scattering
- For large albedo (> 50%), negative fit factors are found for AMF proxy => wavelength dependence is inverted and only weakly dependent on altitude

- ⇒ multiple scattering over bright surfaces is stronger at shorter wavelengths
- \Rightarrow wavelength dependence of AMF is inverted

$NO_2(\lambda) / NO_{2:}$ Case Study Highveld: GOME-2

- NO₂ plume from Highveld power plants can be tracked onto the ocean
- NO₂ SC values increase downwind of the source
- AMF Proxy also has higher values within the plume, but
 - Is more narrow
 - Has largest values at beginning of plume, not at the end of it

Summary

- At large NO₂ values (> 5 x 10¹⁶ molec cm⁻²), AMF becomes a clear function of NO₂ column which needs to be corrected (> 10% effect)
- The effect increases with large SZA and low surface albedo
- A simple correction can be applied using tabulated factors
- At large BL NO₂ values, the wavelength dependence of the NO₂ AMF becomes relevant in the fit
- A simple empirical correction can be used to account for the AMF change
- At large NO₂ columns, the effect can be used to derive some information on NO₂ layer height
- All effects of large NO₂ values are expected to increase in frequency for instruments having better spatial resolution (S5P, S4)

Funding by DLR Bonn under Contract 50EE1247