

Atmospheric sulfur from the upper troposphere to the upper stratosphere: 10 years of MIPAS observations

M. Höpfner¹, C. D. Boone², C. Brühl³, N. Glatthor¹, U. Grabowski¹, S. Kellmann¹, M. Kiefer¹, G. Krysztofiak-Tong⁴, A. Leyser¹, A. Linden¹, B.-M. Sinnhuber¹, G. Stiller¹, T. v. Clarmann¹, I.T. Baker⁵, J. Berry⁶, J. E. Campbell⁷, S.R. Kawa⁵, J. Stinecipher⁹

¹Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Germany, ²Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada, ³Max-Planck-Institute for Chemistry, Mainz, Germany, ⁴University of Orléans, France, ⁵Colorado State University, Atmospheric Science Department, Fort Collins, Colorado, USA, ⁶Department of Global Ecology, Carnegie Institution, Stanford, California, USA, ⁷Sierra Nevada Research Institute, University of California, Merced, California, USA, ⁸NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, ⁹Environmental Systems Graduate Group, University of California, Merced, California, USA

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

SO2 and OCS in the stratosphere: the aerosol layer

Assessment of Stratospheric Aerosol Properties, SPARC, 2006

The Persistently Variable "Background" Stratospheric Aerosol Layer and Global Climate Change S. Solomon *et al. Science* 333, 866 (2011); DOI: 10.1126/science.1206027

> M. Höpfner MIPAS SO2 and OCS ESA ATMOS 2015

Karlsruhe Institute of Technolog

Sulfur in the troposphere: OCS and the carbon cycle

Photosynthetic Control of Atmospheric Carbonyl Sulfide During the Growing Season J. E. Campbell, *et al.* Science **322**, 1085 (2008); DOI: 10.1126/science.1164015

Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux

David Asaf¹, Eyal Rotenberg¹, Fyodor Tatarinov¹, Uri Dicken¹, Stephen A. Montzka² and Dan Yakir¹*

- Limited understanding of CO₂ sinks and sources on land due to difficult separation between the CO₂ taken up by photosynthesis and that released by respiration
- OCS as proxy for photosynthetic CO₂ uptake
- OCS and CO₂ have the same diffusion pathway into leaves
- Hydration reaction is irreversible for OCS: OCS + H₂O -> H₂S + CO₂

MIPAS products retrieved at KIT

SO₂

- Retrieval from mean spectra: 13-45 km, monthly+zonal averages \rightarrow Höpfner et al., ACP, 2013
- Retrieval from single limb-scans: 8-20 km, high temporal and horizontal resolution \rightarrow Höpfner et al., ACPD, 2015

ocs

Retrieval from single limb-scans: 8-35 km, high temporal and horizontal resolution \rightarrow Glatthor et al., subm. 2015

SO₂ from mean MIPAS spectra

Pre-MIPAS observations of SO₂ in the stratosphere

First global measurements of SO₂ throughout the stratosphere

First global measurements of SO₂ throughout the stratosphere

SO₂ from single MIPAS limb-scans

Höpfner et al., ACPD, 2015

Global measurements of vertically resolved volcanic plumes \rightarrow Injection mass of SO₂ for climate-chemistry models

An Anatahan Ch Chaiten Da Dalaffilla Eyjafjallajökull Ev Fernandina Fe Fournaise, Piton de la Fo Galeras Ga Gr Grímsvötn Kar Karymsky Kasatochi Ka Ma Manam Me Merapi Nabro Na Ny Nyamuragira Ok Okmok Pa Pacaya Puyehue-Cordon Caulle Pu Ra Rabaul Re Redoubt Reventador Rev Ru Ruang Sa Sarychev Sh Shiveluch Si Sierra Negra So Soufrière Hills

Karlsruhe Institute of Technolog

Ta Tair, Jebel al

M. Höpfner
MIPAS SO2 and OCS
ESA ATMOS 2015

Karlsruhe Institute of Technology

	Name	Eruption	Location	$M(t_0)$ [Gg]	$M(t_0)$ [Gg]
		date	° N/° E	if present: τ [d]	if present: τ [d]
					from other sources
Ny	Nyamuragira	25 Jul 2002	-1.4/29.2	22(1)/12(1)/3(0)/37(2) ^a	
Ru	Ruang	25 Sep 2002	2.3/125.4	36(19)/39(9)/15(2)/90(21)b	74 ¹
Rev	Reventador	3 Nov 2002	-0.1/-77.7	54(47)/29(6)/12(2)/94(47)b	$65-84^1$; 100^2
So	Soufrière Hills	12 Jul 2003	16.7/-62.2	68(19)/28(7)/2(1)/98(20) ^b	$100-128^3$; 140^1
Ma	Manam	27 Jan 2005	-4.1/145.0	79(15)/87(9)/39(3)/206(17) ^a	180^1 ; $99 \pm 13 (> 68.1 \text{ hPa})^4$
An	Anatahan	6 Apr 2005	16.4/145.7	34(11)/34(7)/0(0)/68(13) ^a	1651
Tr	TropVolc	mid-Jul 2005	0.0/0.0	38(17)/21(5)/1(0)/60(18) ^a	
Tr	TropVolc	mid-Aug 2005	0.0/0.0	61(26)/23(5)/3(1)/88(27) ^a	
Ma	Manam	27 Feb 2006	-4.1/145.0	21(4)/58(8)/1(0)/80(9) ^a	
So	Soufrière Hills	20 May 2006	16.7/-62.2	40(29)/38(4)/85(15)/162(33) ^a	200^1 ; $123-233^5$; $139 \pm 24(> 68.1 \text{ hPa})^4$
Ra	Rabaul	7 Oct 2006	-4.3/152.2	75(26)/118(34)/12(4)/205(43)b	125^1 ; 230^2 ; $190 \pm 14 (> 100 hPa)^4$
Ny	Nyamuragira	27 Nov 2006	-1.4/29.2	49(6)/5(0)/-/54(6) ^a	58-216 ¹
Fo	Fournaise,	4 Apr 2007	-21.2/55.7	57(10)/12(1)/2(1)/71(10) ^a	$140(>7.5 \mathrm{km})^6$
	Piton de la				
Та	Tair, Jebel at	30 Sep 2007	15.6/41.8	26(11)/27(5)/3(1)/56(12) ^b	46-57 ⁷
Ch	Chaiten	2 May 2008	-42.8/-72.7	26(7)/2(0)/2(0)/30(7) ^a	$10^8; 6^9$
Ok	Okmok	12 Jul 2008	53.4/-168.1	110(41)/31(6)/2(0)/143(41) ^b	$200-300^5$; $100-200^{10}$
Ka	Kasatochi	7 Aug 2008	52.2/-175.5	645(127)/210(86)/43(8)/899(154) ^c	$900-2700^{11}$; 2200^{12} ; $1000(>10 \text{ km})^{13}$
		-			1200^5 ; 1700^9 ; 1600^{14} ; $1350 \pm 38 (> 215 hPa)^4$
				$\tau = 14(1)/23(5)/32(4)$	$\tau = 8-9^{12}$; 18 ⁹ ; $\approx 10^{14}$; 27 ± 1(> 215 hPa) ⁴
Da	Dalaffilla	3 Nov 2008	13.8/40.5	31(9)/47(10)/1(0)/79(13) ^b	100-200 ¹⁵
Re	Redoubt	23 Mar 2009	60.5/-152.7	182(10)/18(7)/-/200(12)c	225-335 ¹⁶
				$\tau = 24(1)/22(6)/-$	
Fe	Fernandina	10 Apr 2009	-0.4/-91.6	14(2)/11(3)/2(0)/27(4) ^a	
Sa	Sarychev	12 Jun 2009	48.1/153.2	888(293)/542(60)/44(4)/1473(299)c	1200^{17} ; 900^{14} ; $571 \pm 42 (> 147 hPa)^4$
			1		$1160 \pm 180 (> 215 \mathrm{hPa})^4$
				$\tau = 15(2)/25(1)/38(2)$	$\tau = 27 \pm 2(> 147 \mathrm{hPa})^4; 17 \pm 3(> 215 \mathrm{hPa})^4;$
					$\tau = 10 - 11^{17}; \approx 10^{14}$
Nv	Nyamuragira	2 Ian 2010	1 4/29 2	17(5)/3(1)/2(0)/ 22(6) ^b	
So	Soufrière Hille	11 Eeb 2010	167/ 62.2	11(3)(1)(2)(5)(1)(22(0)) $11(3)(1)(2)(5)(1)(28(4))^{b}$	5018
30 Do	Deceve	28 May 2010	10.77-02.2	(10(2)/4(1)/14(2)b	2019
Pa	Pacaya	28 May 2010	14.4/ -90.6	$-/10(2)/4(1)/14(2)^{\circ}$	2010
Me	Merapi	4 Nov 2010	-7.5/110.4	-/253(61)/23(7)/276(61)°	440-0
C1		10.0		$\tau = -/15(2)/24(7)$	
Sh	Shiveluch	12 Dec 2010	56.7/161.4	$18(4)/1(0)/0(0)/20(4)^{a}$	
Kar	Karymsky	1 Jan 2011	54.0/159.4	$-/-/1(0)/1(0)^{a}$	
Gr	Grímsvötn	21 May 2011	64.4/-17.3	273(101)/2(0)/-/276(101) ^a	$350-400^{14}$; $108 \pm 11(> 215 \text{ hPa})^4$
Pu	Puyehue-	4 Jun 2011	-40.6/-72.1	185(33)/-/-/185(33)°	25014
	Cordón Caulle			$\tau = 32(3)/-/-$	$\tau = 6.8^{22}$
Na	Nabro	12 Jun 2011	13.4/41.7	131(86)/343(79)/65(5)/539(117) ^c	1500^{14} ; $650(>10 \text{ km})^{21}$
					$543 \pm 45 (> 147 \mathrm{hPa})^4$
				$\tau = 11(3)/23(2)/27(1)$	$\tau = 20 \pm 2(> 147 \mathrm{hPa})^4$

SO₂-lifetime: differences between nadir and limb

Nadir sounding instruments seem to strongly underestimate the lifetime of SO_2 in the UTLS:

- Detection-limit of nadir sounders (global dillution of SO₂, Haywood et al., 2010) ?
- Combination of lower SO₂-lifetime at lower altitudes and nadir averaging kernels?

Non-volcanic aerosol background

Strong annual cycle of SO2 in the upper troposphere? To be confirmed by in-situ observations

OCS from single MIPAS limb-scans

Glatthor et al., subm. 2015

First global distributions of OCS: tropical sink

¹⁹ Glatthor et al., subm. 2015

OCS-hole annual cycle: model comparison

Signal of biomass uptake over S-America: observations can only be reproduced by global models, when a much larger vegetation uptake and a corresponding increase in oceanic emissions than in earlier estimates is considered

Difference: Box – Whole lat. Band -10delta vmr / pptv -20-30 -40Mar May Jul Sep Nov Ian Ian Measurement **EMAC Kettle** EMAC Kettle (modified) PCTM Berry et al., 2013

Glatthor et al., subm. 2015

Summary

MIPAS SO₂

- Stratospheric maximum @26-30 km
- Downwelling during polar winter and springtime depletion of SO₂ as explanation for the polar aerosol bursts
- Visible and near-IR photolysis of H₂SO₄ and irreversible sink of sulfur
- Height-resolved SO₂ masses and lifetimes for ~30 volcanic eruptions reaching stratospheric levels
- Nadir instruments seem to underestimate SO₂ lifetimes in the UTLS
- Strong seasonal cycle in the northern hemispheric UT
- Enhanced values in monsoon regions

MIPAS OCS

- First global distributions of OCS including observation of tropical sink: need of much larger vegetation uptake in models
- Strong source over W-Pacific in spring: not well captured by models
- Biomass burning cannot be identified as a strong source of OCS