Biomass burning emission estimates from IASI CO satellite measurements With links to the carbon cycle

Maarten Krol, the Netherlands Wageningen University (WU) Netherlands Institute for Space Research (SRON) IMAU, Utrecht University (UU)

Thanks to: Ingrid van de Laan, Wouter Peters, Cathy Clerbaux, Sourish Basu, Luciana Gatti, John Miller, Ivar van der Velde, Thijs van Leeuwen, Sandrine Guerlet, NOAA

S RON Netherlands Institute for Space Research

2009 and 2010 XCO₂ from GOSAT

2009 and 2010 CO₂ from Zotino tower (Siberia)

Winderlich, PhD Thesis, Hamburg, 2012

4D-VAR in a nutshell

NOVELTIS

Zoom (1x1 degree) over region of interest Optimize CO emissions Biomass burning: 3-day periods (Prior SibCASA-GFED4) • VOC CO source: monthly Oxidation sink: fixed OH Assimilate observations: IASI CO (individual measurements only over zoom) NOAA CO on background stations (to anchor CO) background)

South America: 2010 (dry) & 2011 (wet)

Model-Obs (sigma units) (month,day)(8,10)

IASI columns (#/cm2) (month,day)(8,10)

prior Modeled columns (#/cm2) (month,day)(8,10)

	I					1				
2.0	2.4	2.8	3.2	3.6	4.0	4.4	4.8	5.2	5.6	6.0
									1	e18

Model-Obs (sigma units) (month,day)(8,10)

Driver emissions change

IASI columns (#/cm2) (month,day)(8,10)

Modeled columns (#/cm2) (month,day)(8,10)

TM5 with poste emissions

	I	I				1				
2.0	2.4	2.8	3.2	3.6	4.0	4.4	4.8	5.2	5.6	6.0
									1	e18

Error*5 (#/cm2) (month,day)(8,10)

CO₂ - Biomass burning emissions over South America

van der Laan-Luijkx et al., GBC, in review

Impact on CarbonTracker CO₂ exchange

Moscow Fires 2010 (sampled IASI CO)

MERGED_M1QN3_ERROR250 Modeled columns (#/cm2) (month,day)(7,30)

IASI satellite observations

IASI columns (#/cm2) (month,day)(7,30)

1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0 1e18

MERGED_M1QN3_ERROR250 Modeled columns (#/cm2) (month,day)(8,1)

IASI satellite observations

IASI columns (#/cm2) (month,day)(8,1)

1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0 1e18

MERGED_M1QN3_ERROR250 Modeled columns (#/cm2) (month,day)(8,2)

IASI satellite observations

IASI columns (#/cm2) (month,day)(8,2)

1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0 1e18

MERGED_M1QN3_ERROR250 Modeled columns (#/cm2) (month,day)(8,3)

IASI satellite observations

IASI columns (#/cm2) (month,day)(8,3)

1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0 1e18

MERGED_M1QN3_ERROR250 Modeled columns (#/cm2) (month,day)(8,4)

IASI satellite observations

IASI columns (#/cm2) (month,day)(8,4)

1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0 1e18

CO emissions Moscow Fires:

Assimilation IASI CO requires large increments emissions GFED (peat burning)

Optimised emissions lead to better fit to independent observations in Finland

Krol et al., ACP 2013

Moscow Fires CO₂ emissions

Peat fires: large CO/CO₂ emission ratios
Upper limit CO₂ emissions not sufficient to explain observed XCO₂ and CO₂ in 2010
So, what caused the additional CO₂ in 2010?

C-uptake difference calculated by CASA-GFED2

Aug 2010 – Aug 2009 (gC/m²/day)

-1.00 -0.	50 0.0	0.	73 1.46

Biomass burning CO emissions from GFED seem too high

- Optimised emissions come closer to GFAS (and FINN)
- Knowing Biomass burning emissions of CO₂ is important to assess drought sensitivity Amazon

Other factors, like reduced boreal C-uptake, played a role in the reduced drawdown of CO₂ in 2010
Africa 2010 Biomass burning: same GFED bias!

BB emissions 2010

TM-meeting Utrecht

23

Biomass burning over South America: biome specific

van der Laan-Luijkx et al., GBC, in review