Satellite observations and modelling of stratospheric fluorine

Jeremy J. Harrison¹, Martyn P. Chipperfield², Anu Dudhia³, Chris D. Boone⁴, Peter F. Bernath⁵, Lucien Froidevaux⁶, John Anderson⁷, James Russell III⁷

¹NERC National Centre for Earth Observation, University of Leicester, Leicester, UK
 ²School of Earth and Environment, University of Leeds, Leeds, UK
 ³Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK
 ⁴Department of Chemistry, University of Waterloo, Waterloo, Canada
 ⁵Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, USA
 ⁶Jet Propulsion Laboratory, Pasadena, California, USA
 ⁷Department of Atmospheric and Planetary Sciences, Hampton University, Virginia, USA

Figure 2.4 | Globally averaged dry-air mole fractions at the Earth's surface of the major halogen-containing well-mixed GHG. These are derived mainly using monthly mean measurements from the AGAGE and NOAA/ESRL/GMD networks. For clarity, only the most abundant chemicals are shown in different compound classes and results from different networks have been combined when both are available.

Halocarbons

- Many are ozone depleting substances
 - Regulated by the Montreal Protocol
- Strong greenhouse gases
- Many are increasing in the atmosphere
- Many have long atmospheric lifetimes

Inorganic Fluorine

Inorganic fluorine dominates in the stratosphere: HF, COF₂, COCIF

Main sources are CFC-11, CFC-12 and HCFC-22

 $\begin{array}{l} \mathsf{CCI}_2\mathsf{F}_2 \ (\mathsf{CFC}\text{-}12) \ + \ \mathsf{hv} \rightarrow \mathsf{CCIF}_2 \ + \ \mathsf{CI} \\ \mathsf{CCI}_3\mathsf{F} \ (\mathsf{CFC}\text{-}11) \ + \ \mathsf{hv} \rightarrow \mathsf{CCI}_2\mathsf{F} \ + \ \mathsf{CI} \\ \mathsf{CHCIF}_2 \ (\mathsf{HCFC}\text{-}22) \ + \ \mathsf{OH} \rightarrow \mathsf{CCIF}_2 \ + \ \mathsf{H}_2\mathsf{O} \end{array}$

 $\begin{array}{l} \mathsf{CCIF}_2 + \mathsf{O}_2 + \mathsf{M} \to \mathsf{CCIF}_2\mathsf{O}_2 + \mathsf{M} \\ \mathsf{CCIF}_2\mathsf{O}_2 + \mathsf{NO} \to \mathsf{CCIF}_2\mathsf{O} + \mathsf{NO}_2 \\ \mathsf{CCIF}_2\mathsf{O} + \mathsf{O}_2 \to \mathsf{COF}_2 + \mathsf{CIO}_2 \end{array}$

 $\begin{array}{l} \mathsf{CCI}_2\mathsf{F} \ + \ \mathsf{O}_2 \ + \ \mathsf{M} \ \rightarrow \ \mathsf{CCI}_2\mathsf{FO}_2 \ + \ \mathsf{M} \\ \mathsf{CCI}_2\mathsf{FO}_2 \ + \ \mathsf{NO} \ \rightarrow \ \mathsf{CCI}_2\mathsf{FO} \ + \ \mathsf{NO}_2 \\ \mathsf{CCI}_2\mathsf{FO} \ + \ \mathsf{O}_2 \ \rightarrow \ \mathsf{COCIF} \ + \ \mathsf{CIO}_2 \end{array}$

Inorganic Fluorine

 $\begin{array}{l} \mathsf{COF}_2 + \mathsf{hv} \to \mathsf{FCO} + \mathsf{F} \\ \mathsf{COCIF} + \mathsf{hv} \to \mathsf{FCO} + \mathsf{CI} \\ \mathsf{FCO} + \mathsf{O}_2 + \mathsf{M} \to \mathsf{FC}(\mathsf{O})\mathsf{O}_2 + \mathsf{M} \\ \mathsf{FC}(\mathsf{O})\mathsf{O}_2 + \mathsf{NO} \to \mathsf{FCO}_2 + \mathsf{NO}_2 \\ \mathsf{FCO}_2 + \mathsf{hv} \to \mathsf{F} + \mathsf{CO}_2 \end{array}$

- Secondary loss mechanism via reaction with O(¹D)
- F reacts with CH₄, H₂O or H₂ to produce HF, an almost permanent F reservoir.

TOMCAT/SLIMCAT Off-Line 3-D CTM

Off-line 3-D chemical transport model (www.see.leeds.ac.uk/slimcat)

- <u>Vertical coordinate</u> (σ -p TOMCAT, σ - θ SLIMCAT). Variable resolution.
- <u>Horizontal winds</u> and <u>temperatures</u> specified from analyses (e.g. ECMWF, UKMO).
 <u>Vertical winds</u> from analysed divergence *or* diagnosed heating rates (in stratosphere).
- <u>Advection</u>: Prather [1986] second-order moments
- <u>Physics</u>: Tiedtke [1989] convection scheme. Holtslag and Boville [1993] *or* Louis [1979] PBL schemes.
- <u>Chemistry</u>: Stratosphere: O_x , NO_y , HO_x , CI_y , Br_y , F_y , CHO_x , Source gases: CH_4 , N_2O , CFCs, HCFCs, HFCs etc.
- •<u>Aerosols</u>: Specified sulphate surface area. Polar stratospheric clouds
- <u>COF₂ & HF model runs</u>: 1977– 2013

5.6° x 5.6°. 32 levels from surface to 60 km.

tmospheric Chemistry Experiment (ACE)

- Fourier transform spectrometer (FTS): 750 to 4400 cm⁻¹
- Records at 0.02 cm⁻¹ spectral resolution
- Has been recording atmospheric spectra since 2004
- Uses sun as a radiation source, high S/N
- Long path lengths ~ 300 km (limb sounding)
- Measurements at many altitudes
- ACE detects more trace molecules than any other satellite instrument, including COCIF, COF₂, HF
- This work uses the v3.0/v3.5 ACE data product

Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)

- Fourier transform spectrometer (FTS): 685 to 2410 cm⁻¹
- Recorded initially at 0.025 cm⁻¹ spectral resolution, later 0.0625 cm⁻¹
- Detection of limb emission spectra
- Spectra acquired between July 2002 and April 2012
- Measurements at many altitudes
- COF₂ retrievals in this work were performed using v1.3 of the Oxford L2 retrieval algorithm MORSE (MIPAS Orbital Retrieval using Sequential Estimation) with ESA v5 L1B radiance spectra.

alogen Occultation Experiment (HALOE)

OCCULTATION VIEWING GEOMETRY

- Gas filter correlation / broadband filter radiometer
- Uses sun as a radiation source, high S/N
- Operational between 1991 and 2005
- Limb sounder measurements at many altitudes
- HCI, HF, NO, CH₄, H₂O, NO₂, O₃, CO₂
- This work uses the v19 HALOE HF data product

MIPAS – ACE COF_2 zonal means (09/2009 – 08/2010)

MIPAS – ACE – SLIMCAT COF_2 trends (%/year, 01/2004 – 09/2010)

- ACE trends calculated at each altitude in 10° latitude bins from linear regression of percentage anomalies in the monthly COF₂ VMRs
- A SLIMCAT run using fixed dynamics (2000) indicates that the variation in trends is due to changing stratospheric dynamics over the observation period
 - **Overall VMR-weighted trends:**
 - ACE: 0.30 ± 0.44 %/year
 - MIPAS: 0.83 ± 0.34 %/year
 - SLIMCAT: 0.88 %/year

SLIMCAT – ACE COF_2 zonal means (09/2009 – 08/2010)

SLIMCAT – ACE HF zonal means (09/2009 – 08/2010)

HF VMR (ppt)

ACE – HALOE – SLIMCAT time series

GOZCARDS- SLIMCAT time series

GOZCARDS is a merged v19 HALOE / v2.2 ACE-FTS HF data product

ACE – SLIMCAT HF trends (%/year, 01/2004 – 12/2012)

-3.00

-2.00

-1.00

0.00

1.00

%/year

2.00

3.00

4.00

5.00

- ACE trends calculated at each altitude in 10° latitude bins from linear regression of percentage anomalies in the monthly HF VMRs
- A SLIMCAT run using fixed dynamics (2000) indicates that the variation in trends is due to changing stratospheric dynamics over the observation period
- Overall VMR-weighted trends:
 - ACE: 0.52 ± 0.03 %/year
 - SLIMCAT: 0.48 %/year

HALOE – SLIMCAT HF trends (%/year, 01/1998 – 11/2005)

- HALOE trends calculated at each altitude in 10° latitude bins from linear regression of percentage anomalies in the monthly HF VMRs
- Overall VMR-weighted trends:
 - HALOE: 1.12 ± 0.08 %/year
 - SLIMCAT: 1.10 %/year
- BUT overall trends for 10/1991 to 12/1997 do not agree:
 - HALOE: 4.97 ± 0.12 %/year
 - SLIMCAT: 4.01 %/year

Recently

published:

Atmos. Chem. Phys., 14, 11915–11933, 2014 www.atmos-chem-phys.net/14/11915/2014/ doi:10.5194/acp-14-11915-2014 © Author(s) 2014. CC Attribution 3.0 License.

Satellite observations of stratospheric carbonyl fluoride

J. J. Harrison^{1,*}, M. P. Chipperfield², A. Dudhia³, S. Cai³, S. Dhomse², C. D. Boone⁴, and P. F. Bernath^{1,5}

 ¹Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
 ²Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
 ³Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
 ⁴Department of Chemistry, University of Waterloo, 200 University Avenue West, Ontario N2L 3G1, Canada
 ⁵Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA
 *now at: Space Research Centre, Michael Atiyah Building, Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK

Correspondence to: J. J. Harrison (jeremy.harrison@york.ac.uk, jh592@leicester.ac.uk)

Received: 27 May 2014 – Published in Atmos. Chem. Phys. Discuss.: 4 July 2014 Revised: 10 September 2014 – Accepted: 15 September 2014 – Published: 13 November 2014

In preparation:

J.J. Harrison, M.P. Chipperfield, C.D. Boone, P.F. Bernath, J. M. Russell III, L. Froidevaux:

Satellite observations of stratospheric hydrogen fluoride, Atmos. Chem. Phys.

Conclusions

- SLIMCAT agrees well with COF₂/HF satellite observations
 - Need improved COF₂ lab spectroscopy to resolve MIPAS bias
- COF₂ is increasing in the atmosphere
 - HCFC-22 concentrations increasing faster than CFC-12 decreasing
- HF is increasing in the atmosphere
- Variation in COF₂ / HF trends with latitude and altitude indicate changing stratospheric dynamics, particularly between 2004 and 2012.
- But what happens after ACE?