Distribution and Time Evolution of the Ozone Instantaneous Longwave Radiative Effect from IASI and TES observations

S. Doniki¹ D. Hurtmans¹, L. Clarisse¹, C. Clerbaux^{1,2}, H. M. Worden³, K. W. Bowman⁴ and P.-F. Coheur¹

¹ Spectroscopie de l'Atmosphère, Université Libre de Bruxelles (ULB), Brussels, Belgium

² Sorbonne Universités; UPMC Université Paris 06; Université Versailles St.-Quentin; CNRS/INSU, LATMOS-IPSL, Paris, France

³ Atmospheric Chemistry Observations & Modeling (ACOM) Laboratory, National Center of Atmospheric Research (NCAR), Colorado, USA

⁴ Jet Propulsion Laboratory (JPL), CalTech, California, USA

LAT

O₃ Radiative Forcing – IPCC AR5

- Great spatial and temporal variability
- RF = + 0.40 (\pm 0.20) W/m²
- Ozone layer UV absorption
- RF = $-0.05 (\pm 0.1) W/m^2$

O₃ Radiative Forcing – IPCC AR5

Table 8.3 | Contributions of tropospheric and stratospheric ozone changes to radiative forcing (W m⁻²) from 1750 to 2011.

(*IPCC AR5, 2013*)

	Troposphere				Stratosphere		
	Longwave	Shortwave	Total	Normalized Radiative Forcing m W m ⁻² DU ⁻¹	Longwave	Shortwave	Total
AR4 (Forster et al. (2007)			0.35 (0.25 to 0.65)				-0.05 (-0.15 to 0.05)
Shindell et al. (2013a) ^r			0.33 (0.31 to 0.35)				-0.08 (-0.10 to -0.06)
WMO (Forster et al., 2011b)							0.03ª (0.23 to +0.17) +0.03 ^b
Søvde et al. (2011)			0.45 [⊭] 0.38ª	40 39			-0.12 -0.12
Skeie et al. (2011a)			0.41 (0.21 to 0.61)	38			
ACCMIP ^e	0.33 (0.24 to 0.42)	0.08 (0.06 to 0.10)	0.41 (0.21 to 0.61)	42 (37 to 47)	0.13 (0.26 to 0)	0.11 (0.03 to 0.19)	-0.02 (-0.09 to 0.05)
AR5			0.40 (0.20 to 0.60)	42 (37 to 47)			-0.05 (-0.15 to 0.05)

- Different models → Different results
- Stratospheric O₃ RF value more stable: -0.05 ± 0.10 W/m²

No model-to-data comparisons!

- Tropospheric O₃ RF:
 - → Increased 0.40 ± 0.20 W/m²
 - → Difficulties in representation of distribution due to spatial & temporal variability

O₃ Radiative Impact

How can we check what the climate models calculate for RF?

How can we involve satellites?

Why are the satellites important?

O₃ Radiative Impact + Satellites

- Satellites provide: Global coverage, Large amount of data, Vertical distribution of species
- For our work in the **LW band**:
- → Need of a Thermal IR instrument onboard a satellite:
 - Sufficient vertical sensitivity
 - Good spatial/temporal coverage
 - High spectral sampling
- Calculations in 3 steps:
 - 1. **Retrieval**: O₃ profiles, Tsurface, Jacobians of last iteration etc.
 - 2. Instantaneous Radiative Kernel (IRK): Sensitivity of the OLR flux with respect to the observed O_3 profile.
 - 3. Longwave Radiative Effect (LWRE): Radiative impact of O_3 due to absorption in the LW band (full 9.6 μ m).

O₃ Radiative Impact + Satellites

- For our work in the **LW band**:
 - \rightarrow Need of a Thermal IR instrument onboard a satellite:
 - Sufficient vertical sensitivity
 - Good spatial/temporal coverage
 - High spectral sampling
- Calculations in 3 steps:
 - 1. **Retrieval**: O₃ profiles, Tsurface, Jacobians of last iteration etc.
 - 2. Instantaneous Radiative Kernel (IRK): Sensitivity of the OLR flux with respect to the observed O_3 profile.
 - 3. Longwave Radiative Effect (LWRE): Radiative impact of O_3 due to absorption in the LW band (full 9.6 μ m).

LWRE ≠ RF / ERF of IPCC

- Instantaneous / Direct, linked to each specific observation.
- No tropospheric stratospheric adaptation to changes.
- Defined with respect to TOA.
- Not calculated as the difference between pre-industrial to present conditions.

Instrument

Infrared Atmospheric Sounding Interferometer (IASI)

- Nadir Thermal Infrared Radiation sounder
- Spectral range: 645 2760 cm⁻¹
- Spectral resolution: 0.5 cm⁻¹ apodized
- Radiometric noise: ~ 0.1 − 0.2 K
- Spatial coverage: Global 2 x daily (9:30 & 21:30 LT Equator)
- Field of view:

4 simultaneous pixels – 12 km diameter at nadir each

• Full swath width:

± 48° = ~ 2200km / 120 spectra per scan

Retrieval + Calculations with FORLI-O₃ at ULB. \rightarrow Only Clear Sky scenes (Cl. Coverage < 13%)

FORLI-O₃ product used:

- ESA 03-CCI
- To be implemented in the near real-time processing
 @ EUMETSAT

Instrument

Infrared Atmospheric Sounding Interferometer (IASI)

- Nadir Thermal Infrared Radiation sounder
- Spectral range: 645 2760 cm⁻¹
- Spectral resolution: 0.5 cm⁻¹ apodized
- Radiometric noise: ~ 0.1 − 0.2 K
- Spatial coverage: Global 2 x daily (9:30 & 21:30 LT Equator)
- Field of view:

4 simultaneous pixels – 12 km diameter at nadir each

• Full swath width:

± 48° = ~ 2200km / 120 spectra per scan

IRK Formulation

TOA Flux:

$$F_{TOA} = 2\pi \int_{v} \int_{0}^{\pi} L_{TOA}(v,\theta) \cos\theta \sin\theta d\theta d\theta$$

IRK

→ Sensitivity of OLR flux at TOA to $O_3(z_l)$ (in W/m²/ppb)

OR:

Change of TOA flux due to change of O_3 abundance.

Instantaneous:

Refers to **specific amount** of O_3 observed at **specific moment**.

IRK Formulation

TOA Flux:

$$F_{TOA} = 2\pi \int_{v} \int_{0}^{\pi} L_{TOA}(v,\theta) \cos\theta \sin\theta d\theta dv$$

IRK

→ Sensitivity of OLR flux at TOA to $O_3(z_l)$ (in W/m²/ppb)

OR:

Change of TOA flux due to change of O_3 abundance.

Instantaneous:

Refers to **specific amount** of O_3 observed at **specific moment**.

$$\frac{\partial F_{TOA}}{\partial q(z_l)} = 2\pi \int_{v} \int_{0}^{\pi/2} \frac{\partial L_{TOA}(v,\theta,)}{\partial q(z_l)} \cos\theta \sin\theta \, d\theta \, dv$$

 $\Rightarrow \quad \frac{\partial F_{TOA}}{\partial q(z_l)} = \int_{v} \frac{\partial L_{TOA}(v,\theta)}{\partial q(z_l)} \frac{\pi dv}{R(v,\theta)}$

Worden et al., JGR, 2011 Doniki et al., submitted manuscript

$$\frac{\partial F_{TOA}}{\partial q(z_l)} = 2\pi \sum_{i=1}^{5} w_i \int_{v} \frac{\partial L_{TOA}(v,\theta_i)}{\partial q(z_l)} dv$$

Doniki et al., submitted manuscript

- Simulation of Jacobians for 5 angles
- $w_i + \theta_i$ from 5-node Gaussian Quadrature

Question

What are the IRKs?

What is the difference between the 2 methods?

IRK comparison

Anisotropy **Direct Integration** 15 April 2011 Global average Clear-sky IRKs.

Bins of 10° of IASI viewing angle from nadir. Max angle $\approx \pm 48^{\circ}$.

400

800

Anisotropy has angular issues

Direct Integration

- Sensitivity at mid + lower troposphere.
- Max at 8 km.
- Direct Integration average sensitivity at maximum altitude = $0.80 \pm 0.02 \text{ W/m}^2/\text{ppb}$.
- < 41° Anisotropy underestimates IRK For bin 0 - 10°, by 22%.
- > 41° Anisotropy overestimates IRK by 10%.
- Methods coincide for 41°.

Longwave Radiative Effect

What is the actual radiative impact of O₃?

Longwave Radiative Effect

What is the actual radiative impact of O₃?

LWRE = Radiative impact of O_3 due to absorption in the LW band (full 9.6 μ m)

For specific location and time *i*:

$$LWRE_i = \frac{\partial F_{TOA}}{\partial q(z_l)} \bigg|_i \cdot q(z_l)_i \quad \text{in W/m}^2$$

The absolute radiative impact of O₃ (compared to a reference of zero).

 Simple integration of vertical layers, to obtain desired column, e.g. Tropospheric LWRE

O₃ LWRE – Vertical Distribution

PM

Direct Integration

AM

• High LWRE at high altitudes – O₃ layer

- SH: cool clean ocean near stable conditions
- NH: land domination + pollution higher than SH
- NH midlatitudes:
 - Difference up to 25 mW/m² @ 250 hPa

15 mW/m² @ mid + lower troposphere

 $\rightarrow \Delta O_3$ T.C. between AM/PM = 4.2 DU

 $\rightarrow \Delta T surface = 7 K$

** Tsurface affects LWRE also at high altitudes.

15 April 2011 Zonal average

AM - PM

O₃ LWRE – Spatial Distribution

Direct Integration

Tropospheric LWRE

- 2 to 5 times lower than Total locally.
- 4 to 5 times lower than Total globally.

15 April 2011 Global raw data

- High LWRE in Tr<mark>opics:</mark>
- \rightarrow Low O₃ content region
- \rightarrow High Tsurface
- High LWRE in NH midlatitudes during day:
 → Tsurface
- O₃ Total C. LWRE Global Average: 2.30 ± 0.49 W/m²
- O₃ Tropospheric C. LWRE Global Average: 0.54 ± 0.09 W/m²

O₃ LWRE Temporal Variation – Total Column

2011 – Single day averages

Green: Tsurface effects Orange: O₃ column effects ** Global Average mostly follows Tsurface variability

O₃ LWRE Temporal Variation – Tropospheric Column

Green: Tsurface effects Orange: O₃ column effects ** Global Average mostly follows Tsurface variability

O₃ LWRE – IASI and TES/Aura

Conclusions

- Two new parameters:
 - \rightarrow IRK: Sensitivity of OLR flux to O₃ profile
 - \rightarrow LWRE: Radiative impact of O₃ due to absorption
- New method: **Direct Integration**
 - \rightarrow Accurate for the angular integration
 - \rightarrow Computationally expensive
- Strong correlation of LWRE and Temperature
- LWRE tracks O₃ changes
- Good agreement between IASI and TES

IRK + LWRE can be used to assess Chemistry-Climate models

Interested?

Application of IRKs and LWRE on climate models

Benchmarking climate model top-of-atmosphere radiance in the 9.6µm ozone band compared to TES and IASI observations

By H. M. Worden (NCAR)

Friday 12/6, 11.25am

O₃ Radiative Forcing – IPCC AR5

IPCC AR5 (2013)

 Most important GHG after WMGHGs

Tropospheric O₃:

Stratospheric O_3 :

- Short lifetime
- Great spatial and temporal variability
- $RF = +0.40 (\pm 0.20) W/m^2$

- Lifetime ~ few weeks
- Ozone layer UV absorption
- RF = $-0.05 (\pm 0.1) W/m^2$

Longwave Radiative Effect

What is the actual radiative impact of O_3 ?

LWRE = Radiative impact of O_3 due to absorption in the LW band (full 9.6 μ m)

For specific location and time *i*:

$$LWRE_i = \frac{\partial F_{TOA}}{\partial q(z_l)}\Big|_i \cdot q(z_l)_i$$
 in

in W/m²

The radiative impact of a 100% change in O_3 .

 Simple integration of vertical layers, to obtain desired column, e.g. Tropospheric LWRE

Or:

ΔLWRE: the difference between 2 observations at the same spatiotemporal spot.

$$\Delta LWRE_{i} = \frac{\partial F_{TOA}}{\partial q(z_{l})} \bigg|_{i} \cdot \left[q^{obs}(z_{l}) - q^{ref}(z_{l}) \right]_{i}$$

O₃ LWRE Vertical Distribution

15 April 2011 Zonal average Vertical LWRE

IASI viewing angles: 0 to \pm 48° \rightarrow Most angles <41°

- Both methods show same patterns.
- Higher values at NH, land domination.
- Higher values at AM overpass
 → Tsurface effect
- Anisotropy consistently underestimates LWRE.
- The higher the LWRE values, the larger the difference.
- \rightarrow Stratosphere
- \rightarrow Inter-tropical mid-troposphere

O₃ LWRE Comparison– Total Columns

** Polar regions: Compensation of positive/negative biases of overlapping orbits

15 April 2011 Global raw data LWRE total column

- Same broad patterns for both methods.
- Higher values at inter-tropical and NH, land domination.
- Higher values at AM overpass
 → Tsurface effect

Anisotropy:

- Underestimates at near nadir (middle of overpass - red)
- Overestimates at high angles (edges of overpass - blue)
- Matches Direct Integration at around 41° (light blue)