Distribution and Time Evolution of the Ozone Instantaneous Longwave Radiative Effect from IASI and TES observations

S. Doniki1 D. Hurtmans¹, L. Clarisse¹, C. Clerbaux^{1,2}, H. M. Worden³, K. W. Bowman⁴ and P.-F. Coheur¹

¹ Spectroscopie de l'Atmosphère, Université Libre de Bruxelles (ULB), Brussels, Belgium

² Sorbonne Universités; UPMC Université Paris 06; Université Versailles St.- Quentin; CNRS/INSU, LATMOS-IPSL, Paris, France

³ Atmospheric Chemistry Observations & Modeling (ACOM) Laboratory, National Center of Atmospheric Research (NCAR), Colorado, USA

4 Jet Propulsion Laboratory (JPL), CalTech, California, USA

O3 Radiative Forcing – IPCC AR5

- Great spatial and temporal variability
- $RF = +0.40$ (± 0.20) W/m²
-
- Ozone layer UV absorption
- $RF = -0.05$ (\pm 0.1) W/m²

O3 Radiative Forcing – IPCC AR5

Table 8.3 | Contributions of tropospheric and stratospheric ozone changes to radiative forcing (W m⁻²) from 1750 to 2011.

(*IPCC AR5, 2013*)

- Different models \rightarrow Different results
- Stratospheric O_3 RF value more stable: **-0.05 ± 0.10 W/m2**

No model-to-data comparisons!

- Tropospheric O_3 RF:
	- \rightarrow Increased **0.40 ± 0.20 W/m²**
	- \rightarrow Difficulties in representation of distribution due to spatial & temporal variability

O₃ Radiative Impact

How can we check what the climate models calculate for RF?

How can we involve satellites?

Why are the satellites important?

O3 Radiative Impact + Satellites

- **Satellites provide**: Global coverage, Large amount of data, Vertical distribution of species
- For our work in the **LW band**:
- \rightarrow Need of a Thermal IR instrument onboard a satellite:
	- Sufficient vertical sensitivity
	- Good spatial/temporal coverage
	- High spectral sampling
- Calculations in 3 steps:
	- 1. **Retrieval**: O₃ profiles, Tsurface, Jacobians of last iteration etc.
	- 2. **Instantaneous Radiative Kernel** (IRK): Sensitivity of the OLR flux with respect to the observed O_3 profile.
	- 3. Longwave Radiative Effect (LWRE): Radiative impact of O₃ due to absorption in the LW band (full $9.6 \mu m$).

O3 Radiative Impact + Satellites

- For our work in the **LW band**:
	- \rightarrow Need of a Thermal IR instrument onboard a satellite:
		- Sufficient vertical sensitivity
		- Good spatial/temporal coverage
		- High spectral sampling
- Calculations in 3 steps:
	- 1. **Retrieval**: O₃ profiles, Tsurface, Jacobians of last iteration etc.
	- 2. **Instantaneous Radiative Kernel** (IRK): Sensitivity of the OLR flux with respect to the observed O_3 profile.
	- 3. Longwave Radiative Effect (LWRE): Radiative impact of O₃ due to absorption in the LW band (full 9.6 μm).

LWRE ≠ RF / ERF of IPCC

- Instantaneous / Direct, linked to each specific observation.
- No tropospheric stratospheric adaptation to changes.
- Defined with respect to TOA.
- Not calculated as the difference between pre-industrial to present conditions.

Instrument

Infrared Atmospheric Sounding Interferometer (IASI)

- Nadir Thermal Infrared Radiation sounder
- Spectral range: $645 2760$ cm⁻¹
- Spectral resolution: 0.5 cm-1 apodized
- Radiometric noise: \sim 0.1 0.2 K
- **Spatial coverage:** Global 2 x daily (9:30 & 21:30 LT Equator)
- **Field of view:** 4 simultaneous pixels – 12 km diameter at nadir each
- **Full swath width:**

 \pm 48° = \sim 2200km / 120 spectra per scan

Retrieval + Calculations with FORLI- O_3 at ULB. **Only Clear Sky scenes** (Cl. Coverage < 13%)

FORLI- O_3 product used:

- $ESA O3-CCI$
- To be implemented in the near real-time processing @ EUMETSAT

Instrument

Infrared Atmospheric Sounding Interferometer (IASI)

- Nadir Thermal Infrared Radiation sounder
- Spectral range: $645 2760$ cm⁻¹
- Spectral resolution: 0.5 cm-1 apodized
- Radiometric noise: \sim 0.1 0.2 K
- **Spatial coverage:** Global 2 x daily (9:30 & 21:30 LT Equator)
- **Field of view:**

4 simultaneous pixels – 12 km diameter at nadir each

• **Full swath width:**

~ **± 48°** = 2200km / 120 spectra per scan

IRK Formulation

 TOA *Flux:*

$$
F_{TOA} = 2\pi \int_{V} \int_{V}^{\pi} L_{TOA}(v,\theta) \cos \theta \sin \theta d\theta d\theta
$$

IRK

 \rightarrow Sensitivity of OLR flux at TOA to $O_3(z_1)$ **(in W/m2/ppb)**

OR:

Change of TOA flux due to change of O_3 abundance.

Instantaneous:

Refers to **specific amount** of O₃ observed at **specific moment**.

IRK Formulation

F

 ∂

TOA Flux:

$$
F_{TOA} = 2\pi \int_{V}^{T} L_{TOA}(v,\theta) \cos \theta \sin \theta d\theta dv
$$

IRK

 \rightarrow Sensitivity of OLR flux at TOA to $O_3(z_1)$ **(in W/m2/ppb)**

OR:

Change of TOA flux due to change of O_3

Instantaneous:

Refers to **specific amount** of O₃ observed at **specific moment**.

abundance. *^d dv q z L v q z F v l TOA l TOA* ^θ ^θ ^θ ^θ π π cos sin () (, ,) ² () / 2 0 ∫ ∫ [∂] [∂] ⁼ [∂] ∂

Anisotropy $\longrightarrow \frac{dQ}{dq(z_i)} = \int_{v}^{\infty} \frac{dQ}{dq(z_i)} \frac{dQ}{dt}$ (v, θ) (z_i) $\frac{J}{v}$ $\partial q(z_i)$ $R(v, \theta)$ $θ$ π *R v dv q z* L_{TOA} $(v$ *q z* \mathbf{v} \mathbf{v} \mathbf{v} *TOA* $\frac{TOA}{Z_l} = \int_{v}^{V} \frac{U L_T}{\partial}$ ∂ = $\partial F_{_{TOA}}$ **c** $\partial L_{_{TOA}} (v,\theta)$ and v worden et al., JGR, 2011

Doniki et al., submitted manuscript

$$
\frac{\partial F_{TOA}}{\partial q(z_i)} = 2\pi \sum_{i=1}^{5} w_i \int_{v} \frac{\partial L_{TOA}(v, \theta_i)}{\partial q(z_i)} dv
$$

Doniki et al., submitted manuscript

- Simulation of Jacobians for 5 angles
- $w_i + \theta_i$ from 5-node Gaussian Quadrature

Question

What are the IRKs?

What is the difference between the 2 methods?

IRK comparison

 $20^{\circ} - 30^{\circ}$

$30^{\circ} - 41^{\circ}$ $> 41^{\circ}$ 200 200 Pressure (hPa) 400 400 600 600 800 800 Direct Integration Integration **Anisotropy** Anisotrony 1000 1000 Ω 0.5 1.5 Ω 0.5 1.5 IASI/FORLI IRK (mW/m²/ppb) IASI/FORLI IRK (mW/m²/ppb)

**** Anisotropy has angular issues**

Direct Integration

Anisotropy Direct Integration

15 April 2011 Global average Clear-sky IRKs.

Bins of 10° of IASI viewing angle from nadir. Max angle $\approx \pm 48^{\circ}$.

- Sensitivity at mid + lower troposphere.
- Max at 8 km.
- Direct Integration average sensitivity at maximum altitude = 0.80 ± 0.02 W/m²/ppb.
- **< 41° - Anisotropy underestimates IRK** For bin 0 - 10°, by 22%.
- **> 41° - Anisotropy overestimates IRK** by 10%.
- **Methods coincide for 41°**.

Longwave Radiative Effect

What is the actual radiative impact of O₃?

Longwave Radiative Effect

What is the actual radiative impact of O₃?

LWRE = Radiative impact of O_3 due to absorption in the LW band (full 9.6 μ m)

For specific location and time *i*:

$$
LWRE_i = \frac{\partial F_{TOA}}{\partial q(z_i)} \cdot q(z_i)_i
$$
 in W/m²

The absolute radiative impact of O₃ (compared to a reference of zero).

• Simple integration of vertical layers, to obtain desired column, e.g. Tropospheric LWRE

O3 LWRE – Vertical Distribution

AM PM AM – PM

High LWRE at high altitudes $-$ O₃ layer

- SH: cool clean ocean near stable conditions
- NH: land domination $+$ pollution higher than SH
- NH midlatitudes:
	- Difference up to 25 mW/m² ω 250 hPa

15 mW/m² @ mid + lower troposphere

 \rightarrow Δ O₃ T.C. between AM/PM = 4.2 DU

 \rightarrow Δ **Tsurface** $= 7 K$

** Tsurface affects LWRE also at high altitudes.

15 April 2011 Direct Integration **Direct Integration**

O3 LWRE – Spatial Distribution

Tropospheric LWRE

- 2 to 5 times lower than Total locally.
- 4 to 5 times lower than Total globally.

15 April 2011

- High LWRE in Tropics:
- \rightarrow Low O₃ content region
- \rightarrow High Tsurface
- High LWRE in NH midlatitudes during day: \rightarrow Tsurface
- **O3 Total C. LWRE Global Average: 2.30 ± 0.49 W/m2**
- **O3 Tropospheric C. LWRE Global Average: 0.54 ± 0.09 W/m2**

O3 LWRE Temporal Variation – Total Column

AM

PM

Green: Tsurface effects Orange: O₃ column effects

**** Global Average mostly follows Tsurface variability**

O3 LWRE Temporal Variation – Tropospheric Column

Green: Tsurface effects Orange: O₃ column effects **** Global Average mostly follows Tsurface variability**

O3 LWRE – IASI and TES/Aura

Conclusions

- Two new parameters:
	- \rightarrow IRK: Sensitivity of OLR flux to O₃ profile
	- \rightarrow LWRE: Radiative impact of O₃ due to absorption
- New method: **Direct Integration → Accurate** for the angular integration \rightarrow Computationally expensive
- Strong correlation of LWRE and Temperature
- LWRE tracks $O₃$ changes
- Good agreement between IASI and TES

• IRK + LWRE can be used to assess Chemistry-Climate models

Interested?

Application of IRKs and LWRE on climate models

Benchmarking climate model top-of-atmosphere radiance in the 9.6μm ozone band compared to TES and IASI observations

By H. M. Worden (NCAR)

Friday 12/6, 11.25am

O3 Radiative Forcing – IPCC AR5

IPCC AR5 (2013)

• Most important GHG after WMGHGs

Tropospheric O_3 :

Stratospheric O_3 :

- Short lifetime
- Great spatial and temporal variability
- $RF = +0.40$ (\pm 0.20) W/m²
- Lifetime \sim few weeks
- Ozone layer UV absorption
- RF = -0.05 (\pm 0.1) W/m²

Longwave Radiative Effect

What is the actual radiative impact of O₃?

LWRE = Radiative impact of O_3 due to absorption in the LW band (full 9.6 μ m)

For specific location and time *i*:

$$
LWRE_i = \frac{\partial F_{TOA}}{\partial q(z_i)} \bigg|_{i} \cdot q(z_i)_i
$$
 in W/m²

The radiative impact of a 100% change in O_3 .

• Simple integration of vertical layers, to obtain desired column, e.g. Tropospheric LWRE

Or:

ΔLWRE: the difference between 2 observations at the same spatiotemporal spot.

$$
\Delta L WRE_i = \frac{\partial F_{TOA}}{\partial q(z_i)} \left| \left[q^{obs}(z_i) - q^{ref}(z_i) \right] \right|
$$

O₃ LWRE Vertical Distribution

15 April 2011 Zonal average Vertical LWRE

IASI viewing angles: 0 to \pm 48° \rightarrow Most angles <41°

- Both methods show same patterns.
- Higher values at NH, land domination.
- Higher values at AM overpass \rightarrow Tsurface effect
- **Anisotropy consistently underestimates LWRE**.
- The **higher the LWRE** values, the **larger the difference**.
- \rightarrow Stratosphere
- \rightarrow Inter-tropical mid-troposphere

O3 LWRE Comparison– Total Columns

Polar regions: Compensation of positive/negative biases of overlapping orbits

15 April 2011 Global raw data LWRE total column

- Same broad patterns for both methods.
- Higher values at inter-tropical and NH, land domination.
- Higher values at AM overpass \rightarrow Tsurface effect

Anisotropy:

- **Underestimates** at **near nadir** (middle of overpass - red)
- **Overestimates** at **high angles** (edges of overpass - blue)
- **Matches Direct Integration** at around **41°** (light blue)