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Outline 
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Satellite IR O3 observations 
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• Similar to OLR but only for the IR ozone band 
• This is a fundamental quantity, predicted by 

climate models, but never tested against 
observations.   
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Seasonal Patterns in IRK, LWRE 
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Benchmarking O3 band TOA flux 

This research addresses two primary questions: 
 
1) What is the bias in IPCC climate model predictions of 

present day top-of-atmosphere (TOA) flux in the 9.6µm 
ozone band? 

 
1) What is the impact of an ozone band TOA flux bias on 

present day tropospheric ozone flux sensitivity and pre-
industrial to present day ozone radiative forcing estimates? 

The models we will test are GISS RT, CAM-chem with CAM-
RT and with RRTMG using TES and IASI TOA flux and IRKs 
(Instantaneous Radiative Kernels) 



IPCC AR5 Radiative Forcing Definitions 

IPCC AR5 Fig. 8.1 Used in <= AR4 
+ AR5 (hatched) 

Used in 
AR5 (solid) 

Direct Ozone RF 
Preindustrial-to-present day: 0.35 W/m2 
 

through 21st century:      0.89 W/m2 
 

Indirect Ozone RF 
Suppression of carbon uptake due to 
plant damage:   0.6 to 1.1 W/m2 

(Sitch et al., Nature, 2007) 



 

Trade-offs for air-quality controls  
and climate benefits 

IPCC AR5 

Need accurate measurements and model assessments  
for informed policy decisions  



 

Initial Results: O3 band TOA Flux 

O3 band flux 
comparison for 
atmospheres  
specified from  
TES retrievals 
 
Thanks to A. Conley 

(NCAR)  

Known issues: 
• RRTMG band is 980-1080; TES band is 985-1080 (~1.1 to 1.7 W/m2) 
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Initial Results: O3 IRKs 

Model-TES IRK comparison  

GISS RTM for TES retrieved atmospheric state 
TES IRK with single-angle integration for flux (known low magnitude bias) 
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Initial Results: Tropos. O3 LWRE 

• Same atmosphere and surface conditions 
• Large model-model differences for both clear and all-sky cases 
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Initial Results: Tropos. O3 LWRE 
IASI Tropospheric LWRE for 
15 April, 2011 

Thanks to S. Doniki, ULB, Brussels 

TES Tropospheric LWRE 
for MAM 2005-2009 
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H2O and O3 are radiatively coupled 

H2O (lnVMR) Jacobians 
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6.2°N 
High spectral resolution is critical for 
separating O3 and H2O flux variability 



 

Potential Feedbacks to O3 RF from H2O 

Understanding the feedback of water vapor on ozone RF (more water = less O3 RF) 
due to changes in the hydrological cycle from climate change will require the long-
term measurements of IASI (A,B,C-2016) and IASI-NG (2021,2028,2035) 

Water vapor LWRE in the IR ozone band 

Worden et al., Nature GEO, 2008 

IPCC AR5 FAQ 8.1 Fig. 1: Water cycle 
with water vapour feedback ~7%/°C 



Conclusions 

• TOA flux from the IR Ozone band is a fundamental  
quantity in climate models that has not been 
compared to measurements. Potential ECVs? 

• Continuing the TES record with IASI data is critical 
for understanding present day to future changes in 
O3 radiative forcing, such as cloud coverage and 
water vapor feedback. 

• Initial results show differences for both flux and 
flux sensitivity between models and data that need 
to be reconciled. 



 

Backup 



Spectral sensitivity of TOA flux to 
ozone and water vapor  
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High spectral resolution is critical for 
separating O3 and H2O flux variability 



 

Role of ozone in  
chemistry-carbon-climate coupling 

Sitch et al,(2007), Nature 

Direct effect: 
Preindustrial-to-present day:  
.35 [.25, .65] W/m2  
 

Preindustrial through 21st century: 
.89 W/m2 
 

But O3 RF is also coupled to 
changes in H2O 

Indirect effects: 
Suppression of carbon 
uptake by ozone damage to 
plants could lead to additional  
0.62 to 1.09 W/m2 CO2  
radiative forcing 

.89 W/m2 



 

H2O and O3 are radiatively coupled 

Tropospheric ozone LWRE has a strong dependence on water vapor  
in the tropics. 
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• Zonal averages: GISS RTM TOA flux sensitivity and TES IRKs  
 applied to same model differences 

• Dry bias in UT at mid-latitudes for GISS 
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Model-TES ∆LWRE comparison 

Initial Results: Tropos. O3 LWRE 



Flux Estimate and Anisotropy 

September 2009 

H. Worden, K Bowman, et al. 
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L(θ,φ) Flux: 

Anisotropy: 



AIRS clear-sky anisotropy  
models: 14 sub-scenes for  
prec. wv, T_lapse, T_sur 
 

Red = -5°-15°N 
Green = 15°-30°N 
Blue = 30°-45°N 

Anisotropy Results 

X. Huang et al., JGR, 2008  

TES anisotropy spectra  
for clear-sky ocean scenes 



 

ANISOTROPY ESTIMATE 
TE

S 
An

iso
tr

op
y 

R spectral dependence R cloud OD dependence 

W
or

de
n 

et
 a

l.,
 J

G
R

, 2
01

1 



Spectral Anisotropy Estimate 

R = anisotropy, F = flux, L = radiance, θ=nadir angle, ν=frequency 
(assumes azimuthal symmetry) 
 
Let  x = sinθ, then dx = cosθdθ 

 using Gaussian integration of moments. From Abramowitz & Stegun 
 for n=1, k=1:      xi = 0.666667 and wi = 0.50 
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