

→ ADVANCED ATMOSPHERIC TRAINING COURSE 2014

Key findings from 10 years of CO₂ and CH₄ satellite observations

Michael Buchwitz Institute of Environmental Physics (IUP), Univ. Bremen, Germany

Universität Bremen

27-31 October 2014 | Forschungszentrum Jülich | Germany

Overview Talks 1 & 2

Greenhouse gas observations from space

- 1. Why and how ?
- Key findings from 10 years of CO₂ and CH₄ satellite observations (focus: results from ESA GHG-CCI project)

ESA Climate Change Initiative (CC to generate Essential Climate Variables (ECVs)

www.esa-ghg-cci.org/

E

ESA programme

led by Mark Doherty, ESA/ESRIN

Currently 13 ECV projects:

- Aerosol-CCI
- Cloud-CCI
- Fire-CCI
- GHG-CCI CO₂ & CH₄
- Glaciers-CCI
- LandCover-CCI
- OceanColour-CCI
- Ozone-CCI
- SeaLevel-CCI
- SST-CCI
- SoilMoisture-CCI
- Sealce-CCI

8

22 21 26 27 28

29 30

12 13 14 15 16 19 20

- IceSheets-CCI
- + CMUG (Climate Modelling User Group)
- Lead: Roger Saunders (Met Office Hadley) Centre)
- Met Office Hadley Centre, ECMWF, MPI-Meteorology, Météo France

Existing and planed GHG (*) satellite missions

GHG-CCI project www.esa-ghg-cci.org

GHG-CCI: GHG data sets

GHG-CCI: XCO₂ Animation

GHG-CCI Phase 1 (2010-2013): CRDP#1

Carbon Dioxide SCIAMACHY/ENVISAT+TANSO/GOSAT

2002 08

http://www.esa-ghg-cci.org/sites/default/files/documents/public/images/co2scigos_crdp1_ani_v2sm.gif

Results

Focus: Satellite-derived GHG source/sink-related results: **Carbon dioxide**

Terrestrial C sources and sinks: Adding real satellite data ?

Regional terrestrial CO₂ fluxes

IPCC 2013, WG1 Carbon and Other Biogeochemical Cycles

Large discrepancies models vs atmospheric inversions esp. in tropics and northern Africa & large uncertainties (~100%) ! Satellite CO₂ observations have potential to improve our knowledge THE CLIMATE SYMPOSIUM 2014

Climate Research and Earth Observations from Space Climate Information for Decision Making

N-S gradient in atmospheric CO₂ (Normalized to SPO value, average 2006-2010)

"Robust finding: Strong carbon sink in northern extra-tropics."

Martin Heimann @ Climate Symposium 2014

Watch video @ <u>http://www.theclimatesymposium2014.com</u> Session: Monday 13th 14:00-15:30 - Setting the scene: Science perspective

CarboEurope findings (2009)

Executive Summary of the terrestrial carbon balance (CarboEurope-IP)

- The land surface of continental Europe (the geographic region between the Atlantic coast and the Ural Mountains) is a carbon sink for CO₂ of 300 Tg C/yr (0.3 GtC/yr) (as indicated by atmospheric and ground-based measurements). The estimated sink has almost doubled since 2003, mainly due to additional processes understanding.
- ...
- Almost 60% of the continental CO2 sink is located outside the EU-25 in eastern Europe, mainly European Russia. ...
- ...
- The uncertainty in the magnitude of the terrestrial sink remains high. This is a consequence of the heterogenous landscape of Europe, and the diversity of management practices at small scale.

Global atmospheric carbon budget: Peylin et al., 2013

Land

Oceans

Acronym	Reference
LSCEa	Piao et al. (2009)
MACC-II	Chevallier et alal. (2010)
CCAM	Rayner et al. (2008)
MATCH	Rayner et al. (2008)
CT2011_oi	Peters et al. (2007)
CTE2013	Peters et al. (2010)
JENA (s96, v3.5)	Rödenbeck (2005)
RIGC	Patra et al. (2005a)
(TDI-64)	
JMA	Maki et al. (2010)
TrC	Gurney et al. (2008)
NICAM	Niwa et al. (2012)

No satellite XCO₂ data used 13

First global regional-scale CO₂ surface fluxes from GOSAT/RemoTeC

Basu et al., ACP, 2013

Chevallier et al., GRL, 2011:

- TCCON-only inversion
- Consistent with flask-only but larger uncertainties

Adding GOSAT:

Shift of terrestrial net carbon uptake from tropics to (northern) extra tropics

But: 1 year only, still bias issues (e.g., land/ocean), ...

CO₂ flux inversions using different GOSAT XCO₂ products and models

Toward robust and consistent regional CO₂ flux estimates from in situ and spaceborne measurements of atmospheric CO₂

Frédéric Chevallier¹, Paul I. Palmer², Liang Feng², Hartmut Boesch³, Chri and Philippe Bousquet¹

Chevallier et al., GRL , 2014

Regional natural CO₂ fluxes for 2010 Method:

- 3 inversion methods (2x LSCE (LMDZ 19&39), 1x Univ. Edinburgh (UoE))
- CO₂ surface observations and x2 GOSAT satellite XCO₂ products:
 - GHG-CCI UoL (OCFP) v4
 - NASA ACOS v3.3

Conclusions:

Regional flux time series:

Good agreement for phase but NOT amplitude

Annual regional fluxes:

 Not considered realistic for all regions, e.g., Europe: inferred sink "significantly too large" Possible issues / to be improved: Inversion method incl. prior fluxes and transport models, satellite data (biases to be further reduced)

European terrestrial carbon fluxes from SCIAMACHY and GOSAT - I

Goal: Get information on European terrestrial carbon fluxes using satellite data and a method which is not or much less sensitive to potential error sources as discussed in the literature such as

- Potential adverse impact of satellite XCO₂ biases outside of target region (e.g., XCO₂ biases over Africa due to desert dust storm aerosols)
- Potential problems related to long-range transport modelling
- Potential problems related to the used satellite

Approach:Reuter et al.,"Europe only" inversion using STILT-based short range (days)ACPDparticle dispersion modelling using an ensemble of satellite XCO2 retrievalsACPD

- The satellite minus model (CT2011_oi) difference ΔXCO₂ shows a negative correlation with the integrated European surface influence.
- Interpretation: the model's European carbon sink is too weak.
- Quantitative analysis using the **optimal estimation** framework (1D-Var) results in optimized European surface fluxes.

European terrestrial carbon fluxes from SCIAMACHY and GOSAT - II

Reuter et al.,

ACPD

"Europe only" inversion using STILT-based short range (days) particle dispersion modelling using an ensemble of satellite XCO₂ retrievals:

2 satellites

•

- 5 retrieval algorithms / products
- New flux inversion method insensitive to observations outside Europe, large-range transport & other errors
- Various sensitivity studies

Satellite data suggest a (TransCom region) European C sink of 1.02 +/- 0.3 GtC/yr (for 2010)

GOSAT/RemoTeC CO₂: Northern hemisphere summer 2010 carbon fluxes

Reduced carbon uptake during the 2010 Northern Hemispheresummer from GOSATGuerlet et al., GRL, 2013

S. Guerlet,^{1,2} S. Basu,^{1,3} A. Butz,⁴ M. Krol,^{1,3,5} P. Hahne,⁴ S. Houweling,^{1,3} O. P. Hasekamp,¹ and I. Aben¹

Reduced carbon uptake in the summer of 2010 most likely due to Eurasian heat wave driving biospheric fluxes and fire emissions.

Joint inversion GOSAT & flasks: Biospheric & fire CO₂ emission anomaly April–September 2010: 0.89±0.20 PgC over Eurasia

CO₂ seasonal cycle and growth rate

Terrestrial carbon sink observed from space: Variation of growth rates and seasonal cycle amplitudes in response to interannual surface temperature variability Schneising et al., ACP, 2014

O. Schneising¹, M. Reuter¹, M. Buchwitz¹, J. Heymann¹, H. Bovensmann¹, and J. P. Burrows¹ ¹Institute of Envir

Northern Hemisphere

SCIA WFMD&BESD CO₂: Terrestrial carbon sink

Terrestrial carbon sink observed from space: Variation of growth rates and seasonal cycle amplitudes in response to interannual surface temperature variability Schneising et al., ACP, 2014

O. Schneising¹, M. Reuter¹, M. Buchwitz¹, J. Heymann¹, H. Bovensmann¹, and J. P. Burrows¹ ¹Institute of Environmental Physics (IUP), University of Bremen FB1, Bremen, Germany

Inter-annual variability of CO₂ seasonal cycle amplitude vs Temperature

Terrestrial carbon uptake variability correlated with / driven by near-surface temperature changes:

SCIAMACHY:

- 1.25 +/ 0.32 ppm /yr /K
- -> approx. 2.7 +/- 0.7 GtC /yr /K

CarbonTracker vs. SCIAMACHY: Good agreement

Inter-annual variability of CO₂ growth rate vs Temperature

Less carbon uptake (= higher atmospheric growth rate) in warmer years 20

GHG-CCI CAR: CCDAS

Carbon Cycle Data Assimilation System (CCDAS)

CAR, v1.1: Initial assessment by FastOpt (T. Kaminski and M. Scholze) using the reported (reliable) uncertainties as given in the CRDP#1 SCIAMACHY BESD (SCIAMACHY) and EMMA (SCIAMACHY and GOSAT merged) XCO_2 products

Approach:

Optimization of biosphere model parameters

Advantage w.r.t. direct flux inversion:

 May lead to improved biosphere models -> Better climate prediction

Assessed target quantities:

- regional Net Primary Production (NPP)
- regional heterotrophic RESpiration (RES)
- regional Net Ecosystem Production (NEP)

Findings:

- Very high uncertainty reduction:
 - > 50% at model grid scale
 - > 70% for aggregated regions
- To be assessed: impact of biases

Potential for high uncertainty reduction of NEP even when using only 1 year of SCIAMACHY XCO₂

Prior: Scholze et al., 2007

Model: BETHY-TM3

21

Anthropogenic CO₂

Anthropogenic CO₂

Bottom-up estimate Currently not possible to verify this using satellite data !? -> We hope for CarbonSat !

SCIAMACHY CO₂ over anthropogenic source regions

SCIAMACHY XCO₂ WFMDv2.3 (2003-2009) Europe XCO_o [ppm]

381 4 381 7 382 0 382 3 382 6 382 0 383 2 383 4

379 9 380 3 380 7 381 1 381 5 381 9 382 3 382 7 383 1 383.5

380 8 381 4 382 0 382 6 383 2 383 8 384 4 385 0 385 6 386 2

Emission [MtCO./cell/yr]

0.0

10.5 12.0

EDGAR CO₂

emissions

EDGAR v4.2

Emission IMtCO./cell/v/

∆XCO₂ [ppm]

Anthropogenic emissions: Good and bad news

Reuter et al., Nature Geoscience, 2014

"Decreasing NO_x relative to CO₂ emissions in East Asia inferred from satellite observations"

Satellite derived trends of anthropogenic

NO_x and CO₂ emissions

W maximilian.reuter@iup.physik.uni-bremen.de

- Anthropogenic CO₂ emission signal from localized sources isolated via simultaneous SCIAMACHY XCO₂ and NO₂ observations & new spatial filtering method
- North America & Europe:
 Decreasing emissions
 (but uncertain for CO₂)
- East Asia: Increasing emissions but less NOx per CO₂: Trend towards cleaner technology in East Asia

Reuter et al., 2014 (Nature Geoscience)

Anthropogenic CO₂ emissions: Individual cities ?

GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L17806, doi:10.1029/2012GL052738, 2012

Kort et al., GRL, 2012

Space-based observations of megacity carbon dioxide

Eric A. Kort,^{1,2} Christian Frankenberg,² Charles E. Miller,² and Tom Oda^{3,4}

Differencing **GOSAT** observations over megacities with those in nearby background:

- Los Angeles:
 - XCO₂ enhancement: **3.2+/-1.5 ppm**
 - XCO₂ changes of 0.7 ppm, corresponding to a 22% change in emissions, detectable with GOSAT at the 95% confidence level.
- Mumbai:
 - XCO₂ enhancement: **2.4+/-1.2 ppm**

Observed XCO₂ urban dome of Los Angeles June 2009 to August 2010

Anthropogenic CO₂ emissions from space ?

From SCIAMACHY to CarbonSat

Carbon Monitoring Satellite (CarbonSat)

CarbonSat Global CO₂ & CH₄ from space Earth Explorer 8 (EE8) Candidate Mission

CarbonSat Spectral Coverage

www.iup.uni-bremen.de/carbonsat

GHG imaging:

small pixel

& wide swath

CarbonSat: Mission Goals

CarbonSat aims at better separating natural and anthropogenic carbon fluxes via high spatial resolution (~2x3 km²) & good coverage (swath: ~200 km (TBC); goal: 500 km) atmospheric XCO₂ and XCH₄ observations (secondary products: vegetation Solar Induced Fluorescence (SIF, ...) with "GHG imaging" of strong localized CO₂ and CH₄ emission sources.

In combination with **inverse modeling** and robust **validation** (TCCON) this will provide:

Better top-down CO₂ & CH₄ constraints on

- regional / country scale (mainly natural) fluxes (sources and sinks) (e.g., SCIAMACHY, GOSAT, OCO-2, ...)
- city scale emissions (e.g., Buchwitz et al., AMTD, 2013)
- point source emissions (e.g., Bovensmann et al., AMT, 2010)

Paris city CO₂ plume

CarbonSat - Spatial resolution & coverage

CarbonSat: Vegetation Chlorophyll Fluorescence

- Vegetation Chlorophyll / Solar Induced Fluorescence (VCF / SIF) provides observational constraints on carbon Gross Primary Productivity (GPP) (e.g., Guanter et al., 2014)
- O₂-A band "disturbed" by sun induced plant fluorescence -> correction needed for accurate XCO₂ retrieval
- Analysis of GOSAT, SCIAMACHY and GOME-2 data demonstrated that VCF/SIF can be well retrieved using clear solar Fraunhofer lines (Joiner et al, Frankenberg et al., Guanter et al., etc.) -> same approach planned for OCO-2 (Frankenberg et al., 2014) and CarbonSat (Buchwitz et al., 2013)

CarbonSat will provide high-quality SIF @ 755 nm to better constrain GPP

Space-borne demonstration: GOSAT: SIF @ 755 nm

CarbonSat: Similar quality expected as for OCO-2 but with much better coverage

Results

Satellite-derived GHG source/sink-related results: Methane

Methane

Global regional-scale CH₄ emissions via SCIAMACHY

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, D22301, doi:10.1029/2009JD012287, 2009

Bergamaschi et al., 2009

Inverse modeling of global and regional CH₄ emissions using SCIAMACHY satellite retrievals

Peter Bergamaschi,¹ Christian Frankenberg,² Jan Fokke Meirink,³ Maarten Krol,^{2,4,5} M. Gabriella Villani,¹ Sander Houweling,^{2,5} Frank Dentener,¹ Edward J. Dlugokencky,⁶ John B. Miller,^{6,7} Luciana V. Gatti,⁸ Andreas <u>a priori</u>

Received 20 April 2009; revised 23 June 2009; accepted 18 A

Methane retrievals from SCIAMACHY provide important information on atmospheric CH₄ sources, particularly in tropical regions which are poorly monitored by in situ surface observations.

0.0 4.5 9.1 13.6 18.2 22.7 27.3 31.8 36.4 40.9 45.5 50.0 CH₄ emission [mg CH₄ / m² / day]

0.0 4.5 9.1 13.6 18.2 22.7 27.3 31.8 36.4 40.9 45.5 50.0 CH_4 emission [mg CH_4 / m² / day]

SCIAMACHY: Renewed methane growth

Schneising et al., 2011

Latitude band	Mean amplitude seasonal cycle [ppb]		Anomaly since 2007 [ppb yr ⁻¹]		-
	SCIA	TM5(2003)	SCIA	TM5(2003)	_
Global	13.4±4.0	9.8±2.9	7.4	-0.4	-
NH	13.7 ± 2.6	9.3±0.3	8.2	-0.5	NH
SH	8.5±5.3	8.5 ± 1.7	5.4	-0.6	(~0- 60°)
30° N–90° N	12.4 ± 8.0	11.2 ± 0.8	6.6	-0.6	
30° S–30° N	7.3 ± 3.7	5.1 ± 0.9	8.2	-0.2	Tropics
30° S–90° S	10.6 ± 1.2	8.5 ± 3.1	4.4	0.0	
0° N–30° N	17.2 ± 1.9	10.8 ± 1.0	9.1	-0.4	NH Tropics
0° S-30° S	6.1 ± 2.7	5.2 ± 0.3	5.8	-0.5	

Frankenberg et al., 2011

Findings:

• Increase ~7-9 ppb/yr (0.4-0.5%/yr) (2007-2009 relative to 2003-2006)

- Mainly tropics & NH mid latitudes
- No "local / regional hot spot" found
- Analysis complicated by detector degradation

SCIAMACHY & NOAA/flasks: Renewed methane growth

Atmospheric CH_4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements Bergamaschi et al., 2013

P. Bergamaschi,¹ S. Houweling,^{2,3} A. Segers,^{1,4} M. Krol,^{2,3,5} C. Frankenberg,⁶
R. A. Scheepmaker,² E. Dlugokencky,⁷ S. C. Wofsy,⁸ E. A. Kort,⁶ C. Sweeney,^{7,9}
T. Schuck,¹⁰ C. Brenninkmeijer,¹⁰ H. Chen,^{7,9,11} V. Beck,¹² and C. Gerbig¹²

Total emissions

Anthropogenic

reference year: 2003-2005 running mean: 12 months

Wetlands

Findings:

- Methane emissions 2007-2010: +16-20 TgCH₄/yr higher compared to 2003-2005
- Atmospheric increase 2007-2010: on average ~6+/-1 ppb/yr (0.3-0.4%/yr) (relative to 2003-2006; update of global means from Dlugokencky et al., 2009)
- Where?: Mainly tropics & NH mid latitudes, no significant trend for arctic latitudes
- Reason for increase: Mainly increasing anthropogenic emissions
- Interannual variations: Mainly wetlands & biomass burning

SCIAMACHY & NOAA/flasks: Renewed methane growth

Atmos. Chem. Phys., 14, 3991–4012, 2014 www.atmos-chem-phys.net/14/3991/2014/ doi:10.5194/acp-14-3991-2014 © Author(s) 2014. CC Attribution 3.0 License.

(c) (i)

Houweling et al., ACP, 2014

A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements

S. Houweling^{1,2}, M. Krol^{1,2,3}, P. Bergamaschi⁴, C. Frankenberg⁵, E. J. Dlugokencky⁶, I. Morino⁷, J. Notholt⁸, V. Sherlock⁹, D. Wunch¹⁰, V. Beck¹¹, C. Gerbig¹¹, H. Chen^{12,13}, E. A. Kort¹⁴, T. Röckmann², and I. Aben¹

Addresses which region contributed most to the CH_4 increase since 2007:

- Two 2-year periods before and after July 2006 analyzed
- Global difference varies between 27 and 35 Tg/ yr most of which is attributed to the tropics with the northern hemispheric part of this zone contributing most
- Splitting the tropics: largest portion south-east Asia (9+/-13 Tg/yr) consistent with growing demand for energy and food and rapidly growing economies (but large uncertainty)

Renewed methane growth: Anthropogenic or wetlands ?

Global

Carbon

Kirschke, Bousquet, Ciais, et al., 2013

nature

geoscience

Global Methane Budget **2013** Three Decades of Global Methane

Sources and Sinks

REVIEW ARTICLE Publicated online: 20 april Media 2010 (2001) (Media 2010)

Three decades of global methane sources and sinks Status Bruthe etcl.

Methons in a important periodicity and the provide state of the device 20% of the serving induced by locations and the device of the strangeber many involution in the strangeber methods and the provide states and the strangeber devices and the strangeber combinations in the strangeber methods and the provide strangeber devices and the strangeber methods and the strangeber methods and the strangeber devices and the strangeber devices and the strangeber methods and the strangeber devices and the strangeber interpretent and the strangeber methods and the strangeber devices and the strangeber devices and the strangeber methods and the strangeber devices and the strangeber devices and the devices and the strangeber devices and the strangeber devices and the strangeber devices and the strangeber interpret devices and the strangeber devices and the stra

 $R_{\rm ext}$ are the second state of the second structure (LL) concentration $R_{\rm ext}$ and $R_{\rm ext}$ are the second structure (LL) a

Previous review of the global GL indight have fusual one much trees is the indice only⁻¹⁰⁻¹⁰. Thus indice covered diffecut flaw vicebows and employed different scorage/consumpling to the state only one of the state of the state of the constants addressed and indicated angles in GL breaks⁻¹⁰⁻¹⁰. There are constants a global GL, basing for the part there denotes be reasoned in the state of the state of the state of the state of the state denotes of QL angle (how 1). We use themas of the state of the denotes of QL angle (how 1). We use themas of the state of the denotes of the state state of the state of

box Boxes with these simulated by eccepton models of websal as pool. Homes-barming-emissions and by-data-driven approaches for oth websal matural associated Barghimentary Arcianci, D. Web and an another associated Barghimentary Arcianci, D. Web and Barghimentary and Arcan applications and an another bardened and for gradely relativised data.

Sectors and take which and quarks intervention is determined by more three, which and quarks interventions, balance printed by two study is a first metagener. CP, evaluation can be broadly gauged as the two strategies CP, and the strategies of the strategies CP, presenting and their presenting collection of the strategies CP, presenting and their presenting collection of the strategies CP, presenting and their presenting collection of the strategies of the strategies and the strategies of the strategies of the strategies and the strategies of the strategies of the strategies and the strategies of the strategies of the strategies and the strategies and the linear errors and the strategies and the strategies and the strategies of the strategies and the strategies and the strategies of the str

Displayment, "A stress we neer player industrials of this source published in 2006 bare a filter density from the source stress the stress player. Or, is constrained for a transport model, and the midden (CR), modely into a propaphere, which constraines are sold. In the plane of CR, which is the spectra of CR, is and the plane of CR, which is the spectra of CR, which is the midden (CR) and the spectra of CR, which is the spectra of CR, is available of CR, which is the spectra of CR, which is the midden of CR, which is the spectra of CR, which is the spectra of CR, we can be available of CR, which is the spectra of CR, which is the evolution of CR, which is the spectra of CR, which is the constraint of CR, and CR, which is the constraint of CR.

investore. We compare these — and have topics business in armind and

CENTER ACCAMEE I NEAR POINT DATEM, communication and indicational and an acceleration of the second s

Stabilisation period (1999-2006):

 \rightarrow Decreasing to stable fossil fuel emissions and stable to increasing microbial emissions are more likely

Resumed atmospheric increase (>2006) : → Mix of fossil fuel and wetland emissions increase, but relative magnitude remains uncertain

38

Methane Hot Spots

CarbonSat XCH₄ single observation retrieval precision: 9 ppb (0.5%) Target must produce a detectable methane column enhancement at 2 x 3 km² resolution → Single overpass detection limit / uncertainty: 4 - 8 ktCH₄/year (e.g., depending on wind speed)

SCIAMACHY
methane:Remote sensing of fugitive methane emissions from oil and
gas production in North American tight geologic formations
Oliver Schneising¹, John P. Burrows^{1,2,3}, Russell R. Dickerson², Michael Buchwitz¹, Maximilian
Reuter¹, and Heinrich Bovensmann¹
Schneising et al., Earth's Future, 2014

et al., 2012) for switching from coal to natural gas Likely **underestimated in inventories**.

SCIAMACHY & TCCON methane:

Four corners: The largest US methane anomaly viewed from space Kort et al., GRL, 2014

Eric A. Kort¹, Christian Frankenberg², Keeley R. Costigan³, Rodica Lindenmaier^{3,4}, Manvendra K. Dubey³, and Debra Wunch⁵

0.59

Estimated emission Four Corners region: 0.59 Tg CH₄/yr [0.50–0.67; 2σ]

This underestimated source (3.5 x EDGARv4.2) approaches 10% of the EPA estimate of total U.S. CH₄ emissions from natural gas.

Assessement of Climate-Chemistry Model using SCIAMACHY methane - I

Atmos. Chem. Phys., 13, 2653–2689, 2013 www.atmos-chem-phys.net/13/2653/2013/ doi:10.5194/acp-13-2653-2013 © Author(s) 2013. CC Attribution 3.0 License.

(c) ①

SCIAMACHY WFMD 2003-2005

Shindell et al., 2013

Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations

D. T. Shindell¹, O. Pechony¹, A. Voulgarakis^{1,*}, G. Faluvegi¹, L. Nazarenko¹, J.-F. Lamarque², K. Bowman³, G. Milly¹, B. Kovari¹, R. Ruedy¹, and G. A. Schmidt¹

¹NASA Goddard Institute for Space Studies and Columbia Earth Institute, New York, NY USA

²National Center for Atmospheric Research, Boulder, CO USA

³ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA *now at: Department of Physics, Imperial College London, London, UK

SCIAMACHY - (ER-2 + 1.8%)

(Schneising et al., 2011) **versus ER-2** (new generation GISS climate model)

Assessement of Climate-Chemistry Model using SCIAMACHY methane - II

Hayman et al., 2014

Atmos. Chem. Phys. Discuss., 14, 12967–13020, 2014 www.atmos-chem-phys-discuss.net/14/12967/2014/ doi:10.5194/acpd-14-12967-2014 @ Author(s) 2014. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Comparison of the HadGEM2 climate-chemistry model against in-situ and SCIAMACHY atmospheric methane data

G. D. Hayman¹, F. M. O'Connor², M. Dalvi², D. B. Clark¹, N. Gedney³, C. Huntingford¹, C. Prigent⁴, M. Buchwitz⁵, O. Schneising⁵, J. P. Burrows⁵, C. Wilson⁶, N. Richards⁶, and M. Chipperfield⁶

We found that the annual cycles observed in the SCIAMACHY measurements and at many of the surface sites influenced by non-wetland sources **could not be reproduced in these HadGEM2 runs**. This suggests that the emissions over certain regions (e.g., India and China) are possibly too high and/or the monthly emission patterns for specific sectors are incorrect.

GHG-CCI: Publications

www.esa-ghg-cci.org/

Publications

1

12 13 14 15 16 19 20 21 22 23

26 27 28 29 30

he End of talk 2

→ ADVANCED ATMOSPHERIC TRAINING COURSE 2014 27-31 October 2014 | Forschungszentrum Jülich, Germany