

→ ADVANCED ATMOSPHERIC TRAINING COURSE 2014

Atmospheric Gravity Waves Peter Preusse Jülich

27–31 October 2014 | Forschungszentrum Jülich | Germany

ESA traing course, 31-Oct-2014 – p.

gravity wave

buoyancy wave

≠ gravitational wave

Isolated Airparcel

Gravity waves exist in

- Any stratified medium in the presence of gravity
- The sun \rightarrow Helioseismology
- The ocean (e.g. Tsunami)
- Planetary atmospheres, e.g. Jupiter, Mars, Venus, Earth

The examples above propagate in 3D !

A special case of gravity waves are surface waves at the boundary of two media: e.g. water surface waves

Waves in wind and temperature

Clear Air Turbulence

Photo: Ken Meiris DC8 über Evergreen, CO, 9.12.1992

Breaking waves accelerate wind

Quasi Biennial Oscillation QBO After: B. Naujokat

driven to >50 % by GWs, e.g. *Ern et al., 2014*

QBO \rightarrow seasonal prediction?

from Marshall and Scaife, JGR, 2009

Difference of mean winter temperature between QBO phases in NCEP/NCAR reanalysis data.

General circulation \rightarrow **polar troposphere**

Sigmond and Scaife, J. Clim., 2010

Sensitivity on the strength of GW momentum flux

GW impact on middle atmosphere

Red: Processes which are driven to >50 % by GWs Purple: Indirect effects

CRISTA-1 (1994)

Eckermann and Preusse, Science, 1999

 $F \propto \frac{\lambda_z}{\lambda_h} (T')^2$

Absolute values of momentum flux

CRISTA-2, August 1997 CRISTA

Warner & McIntyre

Absolute Values of Momentum Flux [mPa]

Ern et al., JGR, 2004 Orr et al., J. Clim., 2010 : **CRISTA-tuned GW scheme in ECMWF**

GW parameterization in GCM

Input from / validation by measurements:

- 1. Saturated part of GW spectrum obeys m^{-3} scaling law
- 2. Lower stratosphere m^* is of the order of 2 km
- 3. Separate parameterization for orographic waves
- 4. A favorable launch altitude for non-orographic parameterized GWs is the mid-troposphere

Additional information is urgently needed.

The key quantities

Very simplified:

- The momentum flux decides how much drag can be exerted
- The phase speed decides where it is exerted
- The direction decides whether it accelerates or decelerates

Current IR limb sounders: abs. value of GWMF, if along-track sampling is 250 km or less.

AIRS (IASI ?): direction

Superpressure balloons, radio sondes provide all three quantities, but not global coverage

Alternative for drag: missing drag in data assimilation

Comparison of GCM and measurements

SPARC gravity wave initiative (reinstated in 2008; lead Joan Alexander).

A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

Marvin A. Geller, M. Joan Alexander, Peter T. Love, Julio Bacmeister, Manfred Ern, Albert Hertzog, Elisa Manzini, Peter Preusse, Kaoru Sato, Adam A. Scaife, and Tiehan Zhou

J. Clim., 2013

Zonal mean climatologies

general agreement of shape

- quantitative agreement (better factor 2) in winter vortex
- indicates problem at summer high latitudes

GWs above North America

- Difference due to the prevailing winds?
- Missing spread due to merely vertical propagation of parameterized GWs?

Additional instruments: AIRS (IASI)

Gravity waves at 40 km altitude and correlation to convection at 500 km miss distance. *Hoffmann and Alexander, JGR, 2010*

F. Trey, Meteorol. Z., 1919 : We need more kite stations!

What are todays kites?

PREMIER \rightarrow **EE-9**, **ATMOSAT**

PREMIER IRLS parameters

- sampling:
 30 km x
 50 km x 0.7 km
- resolution:
 30 km x
 60 km x 1.0 km
- 12 tracks,
 360 km
 across-track
 coverage
- temperature precision
 0.5-1.0 K
- altitude coverage
 5-55 km

ECMWF: NH winter

Good agreement of temperature-deduced GW-MF with reference

ESA traing course, 31-Oct-2014 - p. 23

PREMIER assessment

By simulated measurements (limb soundings) through ECMWF data fields:

- PREMIER will be able to measure all three key quantities:
 - GW momentum flux
 - direction
 - phase speed (inferred)
- zonal mean net GWMF accurate to \sim 30 %
- independent values at several altitudes throughout entire stratosphere

Backward ray-tracing

end points of backtraces from 29 Jan 2008; 12 GMT; 25 km

horizontal wind velocities at 28 Jan; 18 GMT ; 850 hPa

Preusse et al., ACP, 2014

- **Orographic waves: Greenland**
- Storm approaching Norway

15 ^{_E}

Convective GWs too long

ECMWF

HITEC project on GWs in the ECMWF model

Still needed in 2025?

- Gravity waves are important for e.g. QBO and Brewer-Dobson circulation and thus for weather prediction and climate projection
- GWs in GCMs: oversimplified and ill-constrained
- Climatological information by IR limb-sounders (CRISTA, HIRDLS, SABER), superpressure balloons and radio sondes
- General distribution coarsely realistic
- Uncertainty ranges are large (factor 2-5).
- \bullet \Rightarrow Synoptic-scale climate projections not reliable
- 3D distributions from limb imager would be most important break-through

\Rightarrow Very likely!