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Motivation and introduction The Remote Sensing Devision at the Mace Head Observatory

Both aerosols and clouds cause a direct radiative forcing by scattering and MIRA36 K-band cloud radar
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Ka-Band 35.5 GHz

Range resolution: 30 m

Jenoptik ceilometer CHM15K

absorbing solar and infrared radiation. Besides that, aerosols also have an Based on lidar principle

indirect effect on the radiation budget by altering cloud properties. (wavelength: 1064 nm)

Range: 30 m - 15 km

Minimum resolution: 15 m, 15 s

Twomey first proposed an influence of aerosols on the cloud albedo by
1977).

s can alter the cloud lifetime, the water content of

affecting the cloud droplet number concentration (Twomey, Dual polarization receiver

Furthermore, aeroso Measured quantities: F Measured quantities: Cloud

clouds and the droplet size distribution. They decrease the precipitation

Reflectivity, linear heights, penetration depth,
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efficiency of warm clouds and thereby cause an indirect radiative forcing depolarisation ratio, Doppler &= vertical visibility, height of PBL

associated with the changes in cloud properties. velocity

The aerosol optical thickness is an integrated variable that can be used to

RPG-HATPRO microwave-radiometer

determine the aerosol direct radiative effect. In combination with

Tropospheric (zenith) and boundary layer (scanning)

microphysical cloud properties, their indirect effect can be estimated.

measurements

~ Infrared channel for cloud boundary detection
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%‘0.6- cloud properties from continuous measurements. Synergistic information 2009 to 2013 were analysed. Back-trajectories revealed 34
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cloud microphysics based on a number of assumptions. The algorithm
SYRSOC (SYnergistic Remote Sensing Of Clouds, Martucci and O'Dowd,

2011), is capable to retrieve microphysical properties of single-layer,

results were combined with aerosol in-situ measurements.
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The black carbon concentration (BC) was measured at
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ground by a multi-angle absorption photometer (MAAP).
The median of BC was 140 ng/m? (quartiles: 40 and 220 ng/

m?) for continental and 10 ng/m? (quartiles: 6 and 23 ng/m?)
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homogeneous, non-precipitating liguid water clouds by combining data
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B 80 from a cloud radar, a ceilometer and a microwave radiometer. It provides

Height agl / km

cloud droplet number concentration (CDNC), cloud droplet effective radius,
liquid water content (LWC), cloud albedo and cloud optical depth (COD).

for marine cases. Figures A to E show the distributions of
LWC, effective radius, CDNC, COD and cloud albedo

depending on the black carbon concentration.

Combination of remote sensing and ground based in-situ measurements
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= “h . o LWC from 2009 to 2013 Effective radius from 2009 to 2013 . CDNC from 2009 to 2013
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