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What is SAR?

e Short for “"Synthetic Aperture Radar”

* SAR is an active remote sensing technique (not
dependent on Sun)
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SAR amplltude examples
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Why use radars for imaging?
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Microwaves penetrate the atmosphere AND clouds
Images can be acquired during day AND night

Resolution does not depend on distance

Information content complementary to optical



Uses of SAR amplitude

Include:

Oceonography (wave spectra, wind speed, currents)
Sea ice monitoring

Glaciology (snow wetness, glacier monitoring)
Agriculture (soil moisture, crop classification)
Forestry (forest height, biomass)

Environmental monitoring (urban growth, oil spills)
Military surveillance

SAR images also have “phase”, allowing “interferometry”
applications — covered in next lecture
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Radar = Radio detection and ranging

* Pulse transmitted, distance from time for echo come back
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Airborne/Space
radar

antenna

rne side looking

« Native resolution across track
(range) depends on pulse length




Range resolution

 Whether 2 scatterers can be distinguished depends on
the pulse length:
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« So get good resolution by using short pulse

 In reality a longer pulse with variable frequency is used
(a "chirp”), which can be post-processed to simulate a
short pulse, called “range compression”.

* Resolution typically several metres and does not depend
on distance from target
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“Range compression”
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Airborne/Spaceborne side looking

radar

antenna

* Native resolution along track
depends on the antenna length —
the shorter the antenna, the wider
the beam. 12 m X-Band -> 2 km
beam on ground!




Synthetic Aperture Radar

A trick to improve along-track resolution
Synthetic antenna
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] —EE}' B Ny é_ Physical antenna

All the radar echoes that
illuminate a given patch of
ground are used to construct
a synthetic larger antenna

SAR resolution is then half the antenna length (few m) and is
independent of distance!
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Improvement in Resolution
(Crimea, Ukraine, ERS satellite)

Real Aperture Radar
5x14 km pixels

Aperttge Radar
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Scattering: dependence on roughness

Smooth
(specular)
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Bragg Scattering

Bragg scattering occurs mainly from spectral component
with half radar wavelength
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Scattering Mechanisms

Scattering Mechanisms

MM/\

. Scattering off a rough surface
Reflection off o smooth surface The variation in surface height is on

The angle of incidence, i, equals the
angle of reflection

e Surface scattering 7,

the order of the incoming signal’s
wavelength

e Double bounce

Double Bounce
One possible natural occurence -
Double Bounce reflecting off two smooth surfaces,
(Corner Reflector) grass and a freshly-cut tree’s stump

N

 Volume scattering

Volumetric Scattering
Volumetric Scattering In this example the incident radiation is both
Example gcatter;ng inatree reflected and refracted/transmitted through a
layer of dry snow. The refracted radiation then
reflects off underlying ice, scatters off a chunk
of ice in the snow, and finally refracts back
towerd the receiver.
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What does the Radar measure ?

* Normalized radar cross-section (backscattering coefficient) is given by:

G, (dB) = 10. Log,, (energy ratio)

whereby Isotropic
scatterer
received energy by the sensor
“energy reflected in an isotropic way”

energy ratio =

The backscattered coefficient can be a positive number if there is a focusing of
backscattered energy towards the radar \

or

The backscattered coefficient can be a negative number if there is a focusing of
backscattered energy way from the radar (e.g. smooth surface)
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Dielectric Properties

» Backscatter also depends on dielectric properties.
» Metal and water have high dielectric constant
» Amplitude can be used to determine soil moisture content

In summary, radar signal return
depends on:

*Slope

*Roughness

*Dielectric constant
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Backscattering Coefficient o,

Levels of Radar backscatter Typical scenario

Man-Made objects (urban)
Terrain Slopes towards radar
very rough surface

radar looking very steep

* Very high backscatter (above -5 dB)

» High backscatter (-10 dB to 0 dB) rough surface

dense vegetation (forest)

medium level of vegetation
agricultural crops
moderately rough surfaces

» Moderate backscatter (-20 to -10 dB)

smooth surface
calm water, road
very dry terrain (sand)

» Low backscatter (below -20 dB)
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Scattering and wavelength

\ ~3 cm
C-band ~5c¢cm
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Radar Images at Different Frequencies
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Speckle

The echos sum to
give one phase value
for the pixel

Distributed scatterer pixel

Amplitude has a pseudorandom
element

Neighbouring resolution cells with
same scattering properties can
have different amplitude

This effect known as “speckle”



Speckle

Filtered
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Geometry

4 Ground range D
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SAR Coordinates

GEOGRAPHIC COORDINATES SAR COORDINATES
La N
a y A
: i
! m
L u
t
d h
c

—

Long;tudc Slant-r;ngc

26

=

‘(l//
®
7
00

,-
) .t/f,’-

UNIVERSITY OF LEEDS

COMET



« All SAR satellites fly in a near-polar orbit
« Acquisitions when flying south to north called “Ascending”
* Acquisitions when flying north to south called “Descending”
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Internal datum:
Radar coordinate
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Geographic datum:
ascending

(South)
[ine 2
000102030405060708091011 Line 3
1213141516 17 18 19 20 21 22 23 Line 4
24 25 26 27 etc Line 5
Line 6
(West)
d 19ude
yest m | | (Fast)
r9fe gsingy -
Line 2
nan _ (North) ine 26000
§\+® {2\.& é\.\.@ §‘+® —————— N
Q“':é@
Geograpic datum ‘Computer’ datum
29 Image is upside-

down

COMET S

UNIVERSITY OF LEEDS



Geographic datum:
descending
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Spaceborne SAR Systems (1)

SEASAT ERS-1/2 JERS-1

NASA/JPL (USA) European Space Agency (ESA) Japanese Space Agency (JAXA)
L-Band, 1978 C-Band, 1991-2000/1995-2011 L-Band, 1992-1998

1 ~ : R
RadarSAT-1 e
Shuttle Radar Topography Mission (SRTM)
WHSALIL, L.~ mmael C-Elamscl fcyunt) = e NASALJPL (C-Band), DLR (X-Band)

DLR/ ASL, X-band 1994 C-Band, 1995-2013

ENVISAT/A ALOS /PALSAR

European Space Agency (ESA) Japanese Space Agency (JAXA) BWB,
C-Band (dual), 2002-2012 L-Band (quad), Jan. 2006-2011 5 satellites, X-Band, 2006/2008
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Spaceborne SAR Systems (2)

! . by 58
RadarSAT-I TerraSAR-X/TanDEM-X COSMO-SkyMed
Canadian Space Agency (CSA) DLR /Astrium, Germany ASI, italy
C-Band (quad), 2007 X-Band (quad), 2007/2010 4 Satellites, X-Band (dual),

RISAT-1 ' " PAZ
CRESDA/CAST/NRSCC, China Indian Space Agency (ISRO), India Ministry of Defence, Spain
S-Band (HH or W), 2013 X-Band (quad), 2014

, B A0S
ALOS-2 Radarsat Constellation 1-3
Japanese Space Agency (JAXA) CONAE/ASI, Argentina CSA/MDA, Canada ESA, Europe
L-Band (quad), 2014 L-Band (quad), 201672018 C-band (dual), 2016/2017 P-Band (quad), 2019
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Main acquisition modes
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Traditional ScanSAR
TSX-ScanSAR image

« Synthetic aperture is
smaller, reducing
resolution

 Number of illuminations
for points on groud varies
causing “scalloping”
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Sentinel-1 Wideswath mode: TOPS

(Terrain Observation with Progressive Scans)

Image: ESA
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Why TOPS?
TSX-ScanSAR image TSX-TOPS image
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