

ESA Cryosphere Training Course – Sept. 16, 2016 Leeds, England

Outline

Snow on land from EO

- Motivation
- Visible & Infrared
- Microwave radiometry (active): SAR
 - Backscatter Normalisation Conventions
 - Radiometric Terrain Corrections
 - Backscatter Compositing
 - Sentinel-1 Examples
- Conclusions

Remote Sensing of Snow: Motivation

Knowledge of snow parameterisation important for

- Mitigating large economic impacts of snowfall events
- Snow wetness: run-off modelling: measurements and future prognoses
- Snow wetness: Sudden melt events inducing flooding
- Snow wetness: Hydrology
- Snow distribution and season length interactions with land cover
- Avalanche modelling
- Climate interactions

D. R. DeWalle and A. Rango, **Principles of Snow Hydrology**. Cambridge, UK: Cambridge University Press, 2008.

J. Dietz, C. Kuenzer, and S. Dech, "Global SnowPack: a new set of snow cover parameters for studying status and dynamics of the planetary snow cover extent," Remote Sens. Lett., 6(11), pp. 844–853, Sep. 2015.

Multi-sensor approaches

Multiple sensors each have own strengths and weaknesses:

- VIS/IR
- Microwave (active & passive)
- Airborne Laser Scanning (ALS)

A. J. Dietz, C. Kuenzer, U. Gessner, and S. Dech, "Remote sensing of snow – a review of available methods," Int. J. Remote Sens., vol. 33, no. 13, pp. 4094–4134, Jul. 2012.

Strengths and weaknesses of respective measurements, e.g.:

- available at night?
- distorted in presence of steep topography?

Difficult in past to integrate e.g. VIS/IR and SAR over large regions due to lack of co-temporal products with similar resolutions / relatively homogenous properties

Future: integrate required 'harmonised' measurements, harnessing all strengths?

Visible / Infra-red

Composite Products

- Assemble wide-area coverage using set window
- Well-established for optical remote sensi
- https://lpdaac.usqs.qov/dataset discove

•	Composite usage a recognised remedy to cloud co
	Clavela and a second to the many and to be a second model and

Clouds are a **spatio-temporal** phenome to interpreting single optical image sets

 For SAR data, topography introduces difficultie image acquisition due to:

• gradients in terrain (*spatial*)

variations in imaging geometry depending track (ten

Composite products could help resolve issues min

Yet no widely-established standard SAR-based

	Name	Dataset	Product	Size	Granulari
	MCD15A2	Combined MODIS	Leaf Area Index and Fractional Photosynthetically Active Radiation	1000	Composites
	MCD15A3	Combined MODIS	Leaf Area Index and Fractional Photosynthetically Active Radiation	1000	Composites
	MCD43A1	Combined MODIS	Bidirectional Reflectance Distribution Function and Albedo	500	Composites
I	MCD43A2	Combined MODIS	Bidirectional Reflectance Distribution Function and Albedo	500	Composites
	MCD43A3	Combined MODIS	Bidirectional Reflectance Distribution Function and Albedo	500	Composites
	MCD43A4	Combined MODIS	Bidirectional Reflectance Distribution Function and Albedo	500	Composites
	MCD43B1	Combined MODIS	Bidirectional Reflectance Distribution Function and Albedo	1000	Composites
	MCD43B2	Combined MODIS	Bidirectional Reflectance Distribution Function and Albedo	1000	Composites
	MCD43B3	Combined MODIS	Bidirectional Reflectance Distribution Function and Albedo	1000	Composites
	MCD43B4	Combined MODIS	Bidirectional Reflectance Distribution Function and Albedo	1000	Composites
	MCD43C1	Combined MODIS	Bidirectional Reflectance Distribution Function and Albedo	5600	Composites
	MCD43C2	Combined MODIS	Bidirectional Reflectance Distribution Function and Albedo	5600	Composites
	MCD43C3	Combined MODIS	Bidirectional Reflectance Distribution Function and Albedo	5600	Composites
	MCD43C4	Combined	Bidirectional Reflectance Distribution Function and Albedo	5600	Composites
	MOD09A1	Terra MODIS	Reflectance	500	Composites
	MOD09Q1	Terra MODIS	Reflectance	250	Composites
	MOD11A2	Terra MODIS	Temperature and Emissivity	1000	Composites
ا	UKOPICO	verage	SSetate and Emissivity	5600	Composites
	MOD13A1	Terra MODIS	Vegetation Indices	500	Composites
•	nonati	n at watro	oduce difficulties	1000	Composites
	MOD13C1	Terra MODIS	Vegetation Indices	5600	Composites
	MOD13Q1	Terra MODIS	Vegetation Indices	250	Composites
	MOD14A2	Terra MODIS	Thermal Anomalies and Fire	1000	Composites
i	MOD15A2 ES tO MOD17A2	Terra MODIS	Leaf Area Index and Fractional Photosynthetically Active	1000	Composites
'	MOD17A2	Terra MODIS	efation of single	1000	Composites
	MOD44A	Terra MODIS	Vegetation Continuous Cover/Fields	250	Composites
	MYD09A1	Aqua MODIS	Reflectance	500	Composites
	MYD09Q1	Aqua MODIS	Reflectance	250	Composites
	MYD11A2	Aqua MODIS	Temperature and Emissivity	1000	Composites
1	g _⊻ ø <u>n</u>	HALCKOKT	emplokialin)ssivity	5600	Composites
S	MYD13A1	Aqua MODISTI	500	Composites	
	MYD13A2	Aqua Mobis	ng SAR backscatter	1000	Composites
	MYD13C1	Aqua MODIS	Vegetation Indices	5600	Composites
	MYD13Q1	Aqua MODIS	Vegetation Indices	250	Composites
)		nposite	products to date	1000	Composites
	MVD15Δ2	Agua MODIS	Leaf Area Index and Fractional Photosynthetically Active	1000	Composites

Remote Sensing of Snow: VIS/IR

ESA eduspace

Active Microwave: Synthetic Aperture Radar

Snow and Dielectric Constant: Attenuation in wet snow

FIG. 5. Variation of attenuation with snow wetness at selected frequencies.

F. T. Ulaby, W. H. Stiles, and M. Abdelrazik, "Snowcover Influence on Backscattering from Terrain," IEEE Trans. Geosci. Remote Sens., vol. GE-22, no. 2, pp. 126–133, Mar. 1984.

W. I. Linlor, "Permittivity and attenuation of wet snow between 4 and 12 GHz," J. Appl. Phys., vol. 51, no. 5, pp. 2811–2816, May 1980.

Active Microwave: Synthetic Aperture Radar

SAR: Backscatter Normalisation Conventions

University of

Seasonal prioritization of **SAR** observation windows

University of Normalised Radar Cross Section (NRCS) Zurich^{UZH}

Dept. of Geography / Remote Sensing Laboratories

Backscatter coefficients [dB] are ratio of scattered to incident power over a given <u>area</u>:

RCS NRCS
$$\sigma = k \cdot \frac{P_s}{P_i} \qquad \beta^0 = \frac{\sigma}{A_{\beta}} \qquad \sigma_E^0 = \frac{\sigma}{A_{\sigma}} \qquad \gamma_E^0 = \frac{\sigma}{A_{\gamma}}$$

Known: transmitted & received power P_t & P_r

Derive: incident & scattered power $P_i \& P_s$ from $P_t \& P_r$

$$\beta^{0} = k \cdot \frac{f_{2}(P_{r})}{f_{1}(P_{r})} \cdot \frac{1}{A_{\beta}} \qquad \sigma_{E}^{0} = k \cdot \frac{f_{2}(P_{r})}{f_{1}(P_{r})} \cdot \frac{1}{\underline{A}_{\sigma}} \qquad \gamma_{E}^{0} = k \cdot \frac{f_{2}(P_{r})}{f_{1}(P_{r})} \cdot \frac{1}{\underline{A}_{\gamma}}$$

Standard Areas for Normalisation

Ground Illuminated Area

Backscatter coefficients are relative to isotropic scattering

Dept. of Geography / Remote Sensing Laboratories

An idealised **isotropic** scatterer will scatter equally in all directions

Real Imaged Objects

- -can tend to scatter more forward than back to the sensor, focussing energy away from the measurement
 - are darker, generating negative dB values
- can focus energy back towards the sensor (e.g. through corner reflections), generating positive dB backscatter

Wet snow detection with dB thresholding

Dept. of Geography / Remote Sensing Laboratories

$$(\gamma_{wet}^0 - \gamma_{ref}^0)$$
 [dB]

When difference between candidate image backscatter and dry reference image is lower than -3dB, classify as wet snow

Developed for ERS-1 geometries, VV-pol.

Relies on exact repeat tracks (e.g. 35-day ERS repeat) to avoid corruption e.g. by terrain-induced effects

- N. Longépé, S. Allain, L. Ferro-Famil, E. Pottier, and Y. Durand, "Snowpack Characterization in Mountainous Regions Using C-Band SAR Data and a Meteorological Model," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 2, pp. 406–418, Feb. 2009.
- T. Nagler and H. Rott, "Retrieval of wet snow by means of multitemporal SAR data," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 2, pp. 754–765, Mar. 2000.
- N. Baghdadi, Y. Gauthier, and M. Bernier, "Capability of Multitemporal ERS-1 SAR Data for Wet-Snow Mapping," Remote Sens. Environ., vol. 60, no. 2, pp. 174–186, May 1997.

University of Zurich Spaceborne Radar Geometry

Dept. of Geography / Remote Sensing Laboratories

Incident Angles:

1. Nominal, from Ellipsoid:

$$\theta_E$$

2.Local Incident Angle, from height model:

$$heta_{\it LIM}$$

Normalising σ for *terrain*

$$oldsymbol{eta}^{\scriptscriptstyle 0}$$
, $oldsymbol{\sigma}_{\scriptscriptstyle E}^{\scriptscriptstyle 0}$, $oldsymbol{\gamma}_{\scriptscriptstyle E}^{\scriptscriptstyle 0}$

are each usable and widely used to normalise the backscatter σ , but one main problem remains:

Each of β^0 , σ^0 , γ^0 vary with the local terrain situation (forest on a hill *foreslope* is brighter than forest on *flat* ground, which is brighter than forest on a hill *backslope*)

Local Incident-angle Mask (LIM)

The most common slope-normalisation methodology found in the literature is fails to account for non-homomorphic (one to many correspondence) nature of relationship between Earth coordinates (map geometry) & slant range geometry (native sensor acquisition process)

Normalisation for local variation of ground scattering area expressed in map geometry:

$$\sigma_T^0 \triangleq \sigma_{NORLIM}^0 = \sigma_E^0 \cdot \frac{\sin \theta_{LIM}}{\sin \theta_E}$$

Kellndorfer et al., TGRS, Sept. 1998.

No one-to-one correspondence between slant range and map geometries on **fore-** and **back-**slopes

Relating *received* to *transmitted* power:

$$\overline{P}_r = \frac{\lambda^2}{(4\pi)^3} \cdot \int_{\text{area illuminated}} \frac{P_t G^2}{R^4} \cdot \sigma^0 dA$$

Ulaby, Moore, Fung, 1982.

Standard equation of:
$$\sigma_E^0 = \beta^0 \cdot \sin \theta_E$$

uses an ellipsoid Earth model approximation as a standard normalisation area - using ellipsoidal incidence angle θ_E as a proxy for area

• For radiometric terrain correction, we need to actually perform the integration on a DEM

Time to Leave Kansas!

Dept. of Geography / Remote Sensing Laboratories

The concept of a **single** Local Incident Angle determining the terrain's local normalisation area is **flawed**:

- old concept adapted from ellipsoidal incident angle for ocean, sea-ice, & <u>flatlands</u>
- fails to account for:
 - shadow
 - foreshortening
 - layover

Improve sensor model:

- → use local contributing area, not angle!
- → and measure that area using the gamma convention

Radiometric Normalisation Conventions

Convention	1	2	3	4	5
	$oldsymbol{eta}^{\scriptscriptstyle 0}$	$oldsymbol{\sigma}_E^0$	$oldsymbol{\gamma}_E^0$	$oldsymbol{\sigma}_{\scriptscriptstyle T}^0$	$oldsymbol{\gamma}_T^0$
Earth Model	None	Ellipsoid		Terrain	
Reference Area	A_{eta}	\underline{A}_{σ}	\underline{A}_{γ}	\widehat{A}_{σ}	A_{γ}
Area Derivation	$\delta_r \cdot \delta_a$	$oldsymbol{\underline{\delta}}_g\cdot oldsymbol{\delta}_a$	$oldsymbol{\delta}_p\cdotoldsymbol{\delta}_a$	$oldsymbol{\delta}_g\cdotoldsymbol{\delta}_a$	$\int\limits_{DHM} {oldsymbol{\delta}_p \cdot oldsymbol{\delta}_a}$
Normalisation	$\beta^0 = \frac{\sigma}{A_{\beta}}$	$\beta^{0} \cdot \frac{A_{\beta}}{\underline{A}_{\sigma}}$ $= \beta^{0} \cdot \sin \theta_{E}$	$\beta^{0} \cdot \frac{A_{\beta}}{\underline{A}_{\gamma}}$ $= \beta^{0} \cdot \tan \theta_{E}$	$\sigma_E^0 \cdot \frac{\hat{A}_{\sigma}}{A_{\beta}}$ $= \sigma_E^0 \cdot \frac{\sin \theta_{LIM}}{\sin \theta_E}$	$rac{oldsymbol{eta}^0\cdot A_{eta}}{A_{\gamma}}$
Product		GTC		NORLIM	RTC

Sentinel-1 Acquisition Modes

Dept. of Geography / Remote Sensing Laboratories

IW is main acquisition mode over land (>80%)

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/revisit-and-coverage

Terrain-flattened Gamma Nought

Dept. of Geography / Remote Sensing Laboratories

Interlaken, Switzerland Sentinel-1A IW GRDH VH-pol. May 26, 2015 Terrain-flattening:

Small D. Flattening Gamma: Radiometric Terrain Correction for SAR Imagery, IEEE Trans. on Geoscience & Remote Sensing, 49(8), Aug. 2011, pp. 3081-3093.

Normalise $oldsymbol{eta^0}$: divide by simulated image

RTC

 $oldsymbol{\gamma}_{\scriptscriptstyle T}^{\scriptscriptstyle 0} = oldsymbol{eta}^{\scriptscriptstyle 0} \cdot rac{A_{eta}}{A_{\gamma}}$

Dept. of Geography / R

Sentinel-1A: GTC

(Geometrically Terrain Corrected)

 $\pmb{\gamma}_E^0$

<u>-26dB</u> -1dB

Generated automatically from 3 IW GRDH products using SRTM3

Copernicus Sentinel data (2015)

Dept. of Geography / R

Sentinel-1A: RTC

(Radiometrically Terrain Corrected)

 $oldsymbol{\gamma}_T^0$

-26dB -1dB

Generated automatically from 3 IW GRDH products using SRTM3

Contains modified
Copernicus Sentinel data (2015)

Sentinel-1A: GTC (Geometrically Terrain Corrected)

Dept. of Geography / Remote Sensing Laboratories

 $oldsymbol{\gamma}_E^0$ VH-pol.

<u>-26dB</u> -1dB

Generated from 3 IW GRDH products using SwissALTI3D DEM (10m)

Copernicus Sentinel data (2015)

Sentinel-1A: RTC(Radiometrically Terrain Corrected)

Dept. of Geography / Remote Sensing Laboratories

 γ_T^0 VH-pol.

<u>-26dB</u> -1dB

Generated from 3 IW GRDH products using SwissALTI3D DEM (10m)

Contains modified Copernicus Sentinel data (2015)

Backscatter Composites

-26dB

-1dB

Dept. of Geography / Remote Sensing Laboratories

Revisit Interval: Breaking the tyranny of exact repeat passes

For Regular Intervals with temporal resolution better than repeat-pass interval

- Use moving time-window integrating information from all tracks
- The more (diverse!) data (and tracks) the better esp. combine ascending and descending observations

Composites in RGB Time Series

Dept. of Geography / Remote Sensing Laboratories

-26dB

-6dB

R=2015.01.02+03 / G=2015.01.14+15 / B=2015.02.07+08 ; (each Asc. + Desc.)

Contains modified Copernicus Sentinel data (2015)

3

Interlaken, Switzerland

Freezing: Higher backscatter in Feb. than Jan.: Blue

Composites in RGB Time Series

Dept. of Geography / Remote Sensing Laboratories

-26dB

-6dB

R=2015.02.07+08 / G=2015.04.08+09 / B=2015.05.26+27 ; (each Asc. + Desc.)

Contains modified Copernicus Sentinel data (2015)

30

Interlaken, Switzerland

Melting: Lower backscatter in May than Feb/Apr.: Yellow

Composites in Time Series Movie

Dept. of Geography / Remote Sensing Laboratories

-26dB

-1dB

Jan - May 2015

Contains modified Copernicus Sentinel data (2015)

Interlaken, Switzerland

Easting [km]

Evolution of Snow Cover in the US

[IGOS Cryosphere Theme Report, 2007]

Fig. 3.1. Percentage of snow-covered area within the conterminous U.S. during the 2003-2004 season with corresponding unique snow depths and SWE.

Swiss Seasonal Hydrology: 1971-2012 Daily SWE plotted by elevation

Figure courtesy Tobias Jonas, SLF

Melting generally captured at significant elevations between Feb. 15 and May 15

Key General Recommendations of WMO White Paper on

SAR Acquisition Planning for Terrestrial Snow Monitoring

R1	Use wide-swath modes to enable wide area monitoring with high temporal resolution (i.e. RSAT2 SCN or SCW, Sentinel-1 IW or EW, TSX "SC Wide" & CSK "Huge Region" ScanSAR modes).				
R2	Build combined ascending/descending coverage by default into acquisition plans covering mountainous regions. Favour asc./desc. acquisition sets acquired within a tight time window (1-3 days) to allow a narrow time-attribution to composites generated from these sets.				
R3	Concentrate snowmelt acquisitions on the seasonal window when the majority of snow melting occurs (March through May at temperate northern latitudes). The <i>highest temporal resolution possible</i> is requested during this critical melting period. Although some further acquisitions are also requested <i>outside</i> of this seasonal window, lower temporal resolution at these less critical times is acceptable.				
R4	Standardise dual-pol. mode acquisitions on VV/VH combination: a cross-platform consistent polarisation simplifies combination of datasets from multiple providers (e.g. S1/RSAT2/RCM or TSX/CSK).				
R5	Harmonise acquisition plans of satellites with compatible calibrated backscatter values (e.g. S1/RSAT2/RCM or TSX/CSK). Utilise the available diversity of orbits to achieve the desired diversity of tracks – e.g. to achieve the fullest possible ascending/descending coverage.				
R6	Assure full coverage over land also in coastal regions when other modes are by default programmed over ocean (e.g. favour Sentinel-1 IW or EW over WV).				
R7	Maintain a regular observation plan also during the winter to assure frequent observations of other important snow parameters, and other phenomena related to the winter period such as avalanches and rain on snow events.				

Science Requirements for wide area snowmelt monitoring

Spatial resolution: 10

solution:	100m	V

Variable		Spatial resolution	Temporal resolution	Sensor	Auxiliary Data
Snowmelt area	Regional	100m	1 to 5 days	Sentinel-1	Land cover, DEM
Snowmelt liquid water content	Regional	100m	1 to 5 days	Sentinel-1 dual polarisation	Land cover, DEM

[Malenovský, Z. et al. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 120, 91–101 (2012)]

Temporal resolution (target): 1 day

- "Observation of the daily geographic extent of snow cover is essential because it enables inference of several first order effects of snow on many Earth systems." [IGOS Cryosphere Theme Report, 2007]
- WMO PSTG report "Coordinated SAR Acquisition Planning for Terrestrial Snow Monitoring", PSTG-SARCWG-SNOW-001, Aug. 2014.

Data Collections

Region	DEM	Spatial sampling	Temporal resolution [days]	Sensors
Interlaken region, Switzerland	swissALTI3D (2m)	10 m	(selected) 2	S1A IW DV
European Alps	SRTM3 (3s)	3s (~90m)	16	S1A IW DV, RS2 SCW/SCN VV/VH
Coastal British Columbia, Canada	SRTM3 (3s)	3s (~90m)	24	S1A IW SV
Ellesmere Island, Canada	CDEM ¹	400m	4	S1A EW DH RS2 SCWA HH/HV

Contains modified Copernicus Sentinel data (2015)

S1A IW VH & VV-pol. Oct. 2014 – Aug. 2016: 12d & 16d windows **Jan.-Aug. 2016 VH** 16d shown here

SRTM3 used for geometric and radiometric corrections

Sentinel-1 IW 16d Composites 2015 VH: March 14-29, April 7-22, May 25-June 9; -23dB (black) to -6dB (white)

S1A Alps Wet Snow Maps

Dept. of Geography / Remote Sensing Laboratories

Contains modified Copernicus Sentinel data (2015)

S1A IW 2015 VH & VV-pol.

S1-based wet snow classifications compared with NASA MODIS snow products

Sentinel-1 Dual Pol Snow Mapping Method (ENVEO)

Dept. of Geography / Remote Sénsing Laborator -

Backscatter ratio (median, Mdn, 1st and 3rd quartile) for Sentinel-1 VV- and VH- polarized channels in dependence on local incident angle. Test area Ötztal.

Θ(°)

Nagler et al. 2016; Rem. Sens., 2016, 8(4), 348, doi:10.3390/rs8040348

Figure courtesy Thomas Nagler

Relation for merging R_{vv} and R_{vh} ratios in order to create a combined single channel, R_c :

$$R_{c} = W R_{vh} + (1 - W) R_{vv}.$$
With:
$$IF (\theta < \theta_{1}) \rightarrow \{W = 1.0\}$$

$$IF (\theta_{1} \le \theta \le \theta_{2}) \rightarrow \{W = k \left[1 + \frac{(\theta_{2} - \theta)}{(\theta_{2} - \theta_{1})}\right]\},$$

$$IF (\theta > \theta_{2}) \rightarrow \{W = k\}$$

We use k = 0.5, $\theta_1 = 20^\circ$, $\theta_2 = 45^\circ$, θ is the local incidence angle.

Wet snow segmentation rule: $R_c < THR$, with THR = -2 dB.

University of Example of S1 Snow Melt and Landsat TM Snow Extent - Tröllaskagi Peninsula, Iceland

Dept. of Geography / Remote Sensing Laboratories

Landsat-8, 27 June 2015;

Sentinel-1, 26 June 2015;

	R_c			
	S1-S	S1-F	AR	
LS-S	94.6	5.4		
LS-F	0.2	99.8		
			0.972	

Confusion matrix for the classes snow (S) and snow-free, for snow classification based on Landsat (LS) and Sentinel-1 (S1) data. S1 results are shown for snow maps based on . — overall agreement rate ().

Monitoring melting snow using Sentinel-1

Kytalyk, Siberia

Sentinel-1 EW HH-pol. Backscatter

20150412

Kytalyk, Siberia

Sentinel-1 EW HH-pol. Backscatter

20150527

Kytalyk, Siberia

Sentinel-1 EW HH-pol. Backscatter

20150601

Groundbased sensing

e.g.
Phenocam
in Kytalyk,
Siberia

Movie courtesy G. Ghielmetti, UZH-RSL

Dept. of

Coastal British Columbia Backscatter Composites

S1A IW VV

12 day delta24 day window

N.B. Increased dualpol VV/VH acquisitions in last months)

Composite backscatter from 37 scenes between 2016/04/30 00:00:00 and 2016/05/23 23:59:59

Jan. – Aug. 2016

Longitude [° E]

Ellesmere Island Backscatter Composites

RS2 SCWA HH

2 day delta

4 day window

N.B. 8 bit radiometry CDEM 9300 9200 9100 -10 8800 8700 -15 8600 8500 100 200 300 400 500 600 700 800 900 1000 UTM Easting [km]

Composite backscatter from 7 scenes between 2015/07/12 00:00:00 and 2015/07/15 23:59:59

May – Aug. 2015

RADARSAT-2 Data and Products @ MacDonald, Dettwiler and Associates Ltd. (2015) - All Rights Reserved.

RADARSAT is an official trademark of the Canadian Space Agency.

May – Aug. 2015

RADARSAT-2 Data and Products @ MacDonald, Dettwiler and Associates Ltd. (2015) - All Rights Reserved.

RADARSAT is an official trademark of the Canadian Space Agency.

Contains modified Copernicus Sentinel data (2015)

Dept. of G

Ellesmere Island, Canada

Sentinel-1 EW **4d** Composite HV: May 24-27, June 29-July 2, July 23-26

 $oldsymbol{\gamma}_T^0$ HV-pol.

-23dB -6dB

Contains modified Copernicus Sentinel data (2015)

Dept. of G

Ellesmere Island, Canada

Sentinel-1 EW **4d** Composite HV: July 25-28, Aug. 12-15, Aug. 24-27

 $oldsymbol{\gamma}_T^0$ HV-pol.

-23dB -6dB

Contains modified Copernicus Sentinel data (2015)

Backscatter Composites

- Demonstrations of Local Resolution Weighting with Sentinel-1A & Radarsat-2
 - Geometric and radiometric effects of topography strongly reduced
 - Backscatter composite product properties more homogenous across product, also in presence of terrain

> Sensor Integration

- Not limited to a single sensor: Local Resolution Weighting (LRW) useful for integrating multi-track and multi-mode, but also multi-sensor data streams (e.g. S1 + RS2)
- **Higher time-resolution coming**: Width of time window can be *narrowed* while still supporting full coverage as more data becomes available (S1B opening this month, RCM-1, -2, -3 in 2018?)

Importance of Calibration

 Composite LRW backscatter stable due to dependable and highly accurate S1A geometric and radiometric calibration

Conclusions

- Snow wetness clear strong signal in C-band SAR imagery
- Snow depth and Snow Water Equivalent (SWE) currently not accessible in single-date C-band SAR data
- Series of Sentinel-1 satellites opening a new era of multimodal multiwavelength data integration
 - Contributions from other data suppliers (NASA/USGS, CSA, JAXA, DLR, ASI) welcome
 - E.g. SARs: Radarsat-2, Radarsat Constellation Mission, TerraSAR-X, Cosmo-Skymed, PAZ
 - Future: Paz, NiSAR, TanDEM-L
 - E.g. VIS/IR: MODIS, Landsat, Sentinel-2, Sentinel-3

