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Eruption at Bárðarbunga volcano, Iceland 

• On Aug. 16, 2014, a seismic 
swarm was detected 
underneath Bárðarbunga 
caldera 

• Magma and associated seismicity 
propagated away from caldera, signifying the 
formation of a regional-scale dike with an 
eventual eruption at Holuhraun lava field 

Radarsat-2 

CSK 



Dike propagation and induced stress 

Gudmundsson, et al. 2014 

Sigmundsson, et al. 2014 



The collapsing caldera 

Sigmundsson, et al. 2014 

• Radar altimetry measurements in early September indicated that the surface of 
the ice over the caldera had subsided approximately 20 meters 



Anomalous seismicity along caldera rim 
• Initiation of M > 5.0 events was associated with rapid subsidence of the ice 

surface overlying the caldera 
 



InSAR and the collapsing caldera 

• 1-day COSMO-SkyMed interferograms provide high quality snapshots of the ice 
subsidence (30 - 60 cm of LOS displacement per day) 

• Predominantly aseismic deformation 



Geodetic signature of anomalous seismicity 

• However, larger events on the caldera rim perturb the subsidence pattern 



Data for modeling magma chamber (Part 1) 

• Due to large uncertainties associated with the interaction between the subsiding 
ground and the overlying ice, we only use data on ice free regions adjacent to the 
caldera 

• However, we need to remove any signal due to the dike emplacement 

Radarsat-2 
Aug. 1 - Sep. 18 

Radarsat-2 
Aug. 27 - Sep. 20 



• Discretize a 3-segment 
vertical fault tracing the 
seismicity along the dike 

• Maximum fault depth of 10 
km 

• Only allow for tensile 
(opening) dislocations 

• InSAR + GPS 
observations 

- GPS observations from 
Sigmundsson, et al. 2014 

Modeling the dike emplacement 



InSAR coverage of rift zone 






Inversions using temporal subdomains 

• Divide overlapping InSAR observations into 4 temporal subdomains 

• Include available GPS displacements within each subdomain 

• Solve for distribution of opening for each subdomain 



InSAR downsampling and covariance 

• Use a resolution-based downsampling method (Lohman and Simons, 2005) 
for InSAR data 

- retain a higher density of observations where dike model has greater data 
resolution 

• Exponential distance-weighted covariance function to form data covariance 
matrices 



Time dependent model resolution 

Aug. 16 - Aug. 27 Aug. 27 - Sep. 3 

Sep. 3 - Sep. 6 Sep. 6 - Sep. 20 



• Set up the inverse problem uses Bayes’ Theorem: 

 

 

 

 

 

• Sample the posterior distribution using a Hamiltonian Markov Chain Monte Carlo 
(MCMC) sampling method 

• Sample for spatial distribution of non-negative opening values along the fault 

- also sample for a 2D quadratic polynomial to account for long-wavelength errors 

• No spatial smoothing of the opening values is imposed for the priors 

Inverse problem for the dike model 

Posterior probability for 
model parameters m 

Data likelihood of data 
d given design matrix G 

and parameteters m 

Prior probability for 
model parameters m 



Maximum a posteriori model for dike 

Aug. 16 - Aug. 27 Aug. 27 - Sep. 3 

Sep. 3 - Sep. 6 Sep. 6 - Sep. 20 



Data for modeling magma chamber (Part 2) 

Observed Modeled 

Remove modeled dike signal from 
Radarsat interferograms 



• A model for a subsurface magma chamber must satisfy the following 
observations: 

- Meter-scale subsidence of the caldera 

- Centimeter-scale deformation on ice-free areas adjacent to caldera 

- Symmetric subsidence pattern on the caldera 

• We model the subsidence with a collapsing horizontal circular crack  
(Fialko, et al. 2001) 

Model of magma chamber 

Fialko, et al. 2001 



• The model parameters are chamber location, radius, and excess pressure 
 

• Strong trade-off between radius, depth, and pressure 

- Main parameter is depth-to-radius ratio 

- Shallow, small chamber == Deep, large chamber 
 

• Good constraints on horizontal location from InSAR (small prior variance) 
 

• Include Aug. 27-28 CSK interferogram but with large data uncertainties 

- provides some constraint on pressure change even with uncertain ice-rock 
interaction 

MCMC for sill model parameters 



Depth-radius convergence and trade-off 

Every 5000 samples 



Depth-radius dependence on prior 

• h ≡ (depth / radius) 

• Blue - mean prior 
depth is 6 m 

• Red - mean prior 
depth is 3 m 



“Family” of magma chambers 

• Consistent depth-to-radius 
ratios for different depth/radius 
priors means we cannot 
constrain the depth 

• Choice of depth requires 
independent observations 
(e.g., seismicity) or physical 
upper bound on pressure 
difference 



Magma chamber model results 

     Model A (red) 

• Depth: 8 km 

• Radius: 2.3 km 
 
     Model B (blue) 

• Depth: 4 km 

• Radius: 1.1 km 



Mechanics of the caldera collapse 
• The magma chamber can be 

modeled as a circular sill 

• The radius of the chamber is likely 
smaller than the radius of the 
caldera rim 

? 

• M > 5 earthquakes along caldera rim with CLVD 
focal mechanisms may be caused by two different 
processes: 
- Closing cracks due to failure of internal chamber supports 

- Arc rupture along inward dipping ring faults 



• The Bárdarbunga caldera collapse and Holuhraun eruption was well observed 
via a combination of InSAR, GPS, and seismic data 

• The international constellation of radar satellites indicated rapid 50 cm/day 
subsidence of the ice-covered caldera and meter-scale crustal deformation in 
the active rift zone 

• The large subsidence within the caldera rim (which has never been previously 
observed at Bárdarbunga) provides critical constraints on the collapse 
sequence 

- Most of the subsidence occurs aseismically 

- Circular horizontal sill can explain centimeter-scale deformation on ice-free regions 
and meter scale deformation over the caldera 

- CLVD events can possibly be explained by a “closing crack” mechanism (e.g., 
mine collapse) or rupture on curved ring faults 

Summary 



Thank you! 
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Isolating the earthquakes 

2 km deep penny 
shaped crack 

2 km deep 30° 
dipping rectangular 

crack 



Selection of the smoothing parameter 



Dike emplacement and seismicity 

Seismicity from Iceland Met. Office 






GPS-only inversion 
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