The ongoing collapse of Bárðarbunga Caldera, Iceland

Bryan Riel¹, Pietro Milillo², Mark Simons¹, Paul Lundgren³, **Sergey Samsonov⁴, Hiroo Kanamori¹**

> **1California Institute of Technology 2Universita degli Studi della Basilicata 3Jet Propulsion Laboratory 4Canada Centre for Mapping and Earth Observation**

Eruption at Bárðarbunga volcano, Iceland

- On Aug. 16, 2014, a seismic swarm was detected underneath Bárðarbunga caldera
- Magma and associated seismicity propagated away from caldera, signifying the formation of a regional-scale dike with an eventual eruption at Holuhraun lava field

Dike propagation and induced stress

The collapsing caldera

• Radar altimetry measurements in early September indicated that the surface of the ice over the caldera had subsided approximately 20 meters

Sigmundsson, et al. 2014

Anomalous seismicity along caldera rim

Initiation of $M > 5.0$ events was associated with rapid subsidence of the ice surface overlying the caldera

InSAR and the collapsing caldera

- 1-day COSMO-SkyMed interferograms provide high quality snapshots of the ice subsidence (30 - 60 cm of LOS displacement per day)
- Predominantly **aseismic** deformation

Time from first acquisition (hrs)

Geodetic signature of anomalous seismicity

• However, larger events on the caldera rim perturb the subsidence pattern

Data for modeling magma chamber (Part 1)

- Due to large uncertainties associated with the interaction between the subsiding ground and the overlying ice, we only use data on ice free regions adjacent to the caldera
- However, we need to remove any signal due to the dike emplacement

Radarsat-2 Aug. 1 - Sep. 18

Radarsat-2 Aug. 27 - Sep. 20

Modeling the dike emplacement

- Discretize a 3-segment vertical fault tracing the seismicity along the dike
- Maximum fault depth of 10 km
- Only allow for tensile (opening) dislocations
- InSAR + GPS observations
	- GPS observations from Sigmundsson, et al. 2014

InSAR coverage of rift zone

Inversions using temporal subdomains

- Divide overlapping InSAR observations into 4 temporal subdomains
- Include available GPS displacements within each subdomain
- Solve for distribution of opening for each subdomain

InSAR downsampling and covariance

- Use a resolution-based downsampling method (Lohman and Simons, 2005) for InSAR data
	- retain a higher density of observations where dike model has greater data resolution
- Exponential distance-weighted covariance function to form data covariance matrices

Time dependent model resolution

Inverse problem for the dike model

• Set up the inverse problem uses Bayes' Theorem:

$p(m|\mathbf{d},\mathbf{G}) \propto p(\mathbf{d}|\mathbf{m},\mathbf{G})p(\mathbf{m})$

Posterior probability for model parameters **m**

Data likelihood of data **d** given design matrix **G** and parameteters **m**

Prior probability for model parameters **m**

- Sample the posterior distribution using a Hamiltonian Markov Chain Monte Carlo (MCMC) sampling method
- Sample for spatial distribution of non-negative opening values along the fault
	- also sample for a 2D quadratic polynomial to account for long-wavelength errors
- No spatial smoothing of the opening values is imposed for the priors

Maximum a posteriori model for dike

Data for modeling magma chamber (Part 2)

Model of magma chamber

- A model for a subsurface magma chamber must satisfy the following observations:
	- Meter-scale subsidence of the caldera
	- Centimeter-scale deformation on ice-free areas adjacent to caldera
	- Symmetric subsidence pattern on the caldera
- We model the subsidence with a collapsing horizontal circular crack (Fialko, et al. 2001)

Fialko, et al. 2001

MCMC for sill model parameters

- The model parameters are chamber <u>location</u>, radius, and excess pressure
- Strong trade-off between radius, depth, and pressure
	- Main parameter is depth-to-radius ratio
	- Shallow, small chamber $==$ Deep, large chamber
- Good constraints on horizontal location from InSAR (small prior variance)
- Include Aug. 27-28 CSK interferogram but with large data uncertainties
	- provides some constraint on pressure change even with uncertain ice-rock interaction

Depth-radius convergence and trade-off

Depth-radius dependence on prior

- $h \equiv$ (depth / radius)
- **Blue** mean prior depth is 6 m
- **Red** mean prior depth is 3 m

"Family" of magma chambers

- Consistent depth-to-radius ratios for different depth/radius priors means we cannot constrain the depth
- Choice of depth requires independent observations (e.g., seismicity) or physical upper bound on pressure difference

Magma chamber model results

Model A (red)

- Depth: 8 km
- Radius: 2.3 km

Model B (blue)

- Depth: 4 km
- Radius: 1.1 km

Mechanics of the caldera collapse

- The magma chamber can be modeled as a circular sill
- The radius of the chamber is likely smaller than the radius of the caldera rim
- M > 5 earthquakes along caldera rim with CLVD focal mechanisms may be caused by two different processes:
	- Closing cracks due to failure of internal chamber supports
	- Arc rupture along inward dipping ring faults

Summary

- The Bárdarbunga caldera collapse and Holuhraun eruption was well observed via a combination of InSAR, GPS, and seismic data
- The international constellation of radar satellites indicated rapid 50 cm/day subsidence of the ice-covered caldera and meter-scale crustal deformation in the active rift zone
- The large subsidence within the caldera rim (which has never been previously observed at Bárdarbunga) provides critical constraints on the collapse sequence
	- Most of the subsidence occurs aseismically
	- Circular horizontal sill can explain centimeter-scale deformation on ice-free regions and meter scale deformation over the caldera
	- CLVD events can possibly be explained by a "closing crack" mechanism (e.g., mine collapse) or rupture on curved ring faults

Thank you!

IMAGE: ARCTIC-IMAGES/CORBIS

Isolating the earthquakes

2 km deep 30° dipping rectangular crack

2 km deep penny shaped crack

Selection of the smoothing parameter

Dike emplacement and seismicity

 \bigodot

GPS-only inversion

 $\boxed{\blacktriangleright}$