Knowledge for Tomorrow

TanDEM-X Mission Status: DEM Acquisition and Science Phase

Johannes Böer, Benjamin Bräutigam, Daniela Borla Tridon, Daniel Schulze, Markus Bachmann, Manfred Zink

Microwaves and Radar Institute, DLR

Outline

- The TanDEM-X Mission
- Global DEM Acquisition Plan
- DEM Performance
- TanDEM-X Science Phase
- Summary

TerraSAR-X-add-on for Digital Elevation Measurements

Launched: 21-Jun-2010

acquisition of a global DEM according to Level-3 standard

generation of local DEMs with Level-4 like quality

demonstration of innovative bistatic imaging techniques and applications

Standards for Digital Elevation Models

* slopes below/above 20%

	Spatial Resolution	Absolute Vertical Accuracy (90%)	Relative Vertical Accuracy (point-to-point in 1° cell, 90%)
DTED-1	90 m x 90 m	< 30 m	< 20 m
DTED-2	30 m x 30 m	< 18 m	< 12 m
TanDEM-X	12 m x 12 m	< 10 m	< 2 m / 4 m *
Level-4	6 m x 6 m	< 5 m	< 0.8 m

Coal Mine Hambach - Germany

TanDEM-X Challenges

VDLR

Helix Formation

Precise Formation Control on a Daily Basis

Example: bi-static phase (Oct. 15 – Dec. 12, 2010)

 Achieved formation control accuracy: Cross-track (2D) < 7 m R.M.S. and Along-track < 30 m R.M.S.

TanDEM-X Autonomous Formation Flying Experiment (TAFF): Successful TAFF Closed Loop Campaign 29. - 31.03.2011 !

TanDEM-X Global DEM Acquisition Plan

1st Global Coverage

- Small baseline (~200 m)
- Height of Ambiguity ~ 50 m

3rd Year

- Antarctica
- Difficult terrain to account for shadow & layover
 → Different viewing geometry
- Deserts

2nd Global Coverage

- Increased baseline (~300 m)
- Height of Ambiguity ~ 35 m

Combination:

- Dual Baseline Phase Unwrapping
- Improved relative height accuracy

4th Year & Beyond

- TanDEM-X Science Phase
- Local High-Resolution DEMs
- Global DEM improvement &
- Complementary products

DLR.de • Chart 9

3rd Year Antarctica Acquisitions – May - July 2013 + 2014

Right-Looking

Left-Looking

3rd Year: Additional Coverage of Difficult Terrain

Difficult Terrain: Shadow/Layover

2 overlapping acquisitions available: ASCENDING + DESCENDING

Difficult Terrain: Shadow/Layover

2 overlapping acquisitions available: ASCENDING + DESCENDING

Acquisition of Sandy Deserts

Sandy Deserts: low backscatter => low coherence => high relative height error

Smaller incidence angles: $15^{\circ} - 28^{\circ}$ (nominal $28^{\circ} - 48^{\circ}$)

Sandy Deserts with topography

>acquisition with different viewing geometry as for

mountainous regions

Incidence Angle: 23° Coherence: 0.78

Incidence Angle: 42.5° Coherence: 0.35 Arabian Desert - Coherence -

Example – Taklamakan Desert (China)

- Flat inc. angle, $\theta_i \sim 48^\circ$
- Mean coherence: 0.52

- Steep inc. angle, $\theta_i \sim 16^\circ$
- Mean coherence: 0.84

Example – Taklamakan Desert (China)

- Flat inc. angle, $\theta_i \sim 48^\circ$
- Mean coherence: 0.52

Relative Height Error – Evolution over Time

Relative Height Error – Evolution over Time

Quality of final DEM Tile N57W112

relative height error for 93.03% of the whole tile below 2 m

Verification of Final DEM Performance

Absolute Height Error (mean offsets after final DEM calibration): -0.37m versus GPS (σ = 1.10m) +0.26m versus ICESat (σ = 1.48m)

Deviation TanDEM-X vs. GPS

Deviation TanDEM-X vs. ICESat

Relative Height Error of Final DEM Products

Relative Height Error of Final DEM Products

Production of FinalDEM Tiles

- 40% of all RawDEMs have been mosaicked
- 46% of all final DEM Tiles finished (~9000)
- 52% of the land mass

DLR.de • Chart 22

TanDEM-X Science Phase

- 15 months duration (October 2014 ... December 2015)
- Dedicated to the demonstration of innovative techniques and experiments (secondary mission objective of the TanDEM-X mission)
- Science requirements collected at the beginning of the mission and during TanDEM-X science meetings
- 92 scientific proposals accepted after an Announcement of Opportunity in May 2014
- Link: https://tandemx-science.dlr.de

DLR

- Interferometric modes
- Imaging modes
- in single/dual or quad polarization

Formation Configuration during the Science Phase

from Dec. 2014: Dual Receive Antenna Mode

Formation Configuration during the Science Phase

Summary

- Stable operations in close formation for more than 4 years!
- TSX & TDX Satellites and the combined TerraSAR-X/TanDEM-X Ground Segment are performing remarkably well
- All data required for the global DEM has been acquired
- DEM quality monitoring indicates good agreement with performance predictions
- Final DEM production ongoing, "about half way through"
- Science Phase ongoing since October 2014 with combination of interferometric modes and imaging modes and a variety of baselines https://tandemx-science.dlr.de/

