Multi-temporal SAR Monitoring: exploiting both amplitude and phase information

A. Ferretti, A. Fumagalli, F. Novali, <u>A. Rucci</u>

TRE

24 March 2015

Outline

- SAR images: phase and amplitude data applications
- Importance of a joint analysis of amplitude and phase information for challenging areas
- Application on real case scenarios
- Conclusions

treuropa.com

A SAR image is a set of pixels characterized by amplitude and phase values, both contain information about sensor-targets distance

Amplitude

Phase (known modulo 2π)

Use of phase information

 In order to retrieve information from the phase signal of SAR images it is necessary to compare couples of images ⇒ interferogram

When a data-stack of SAR images is available it is possible to perform PSI analysis

treuropa.com

Use of amplitude information

Speckle tracking techniques can be used to monitor high rate of deformation

Comparison of amplitude data for change detection applications ٠

T ACV

Phase vs Amplitude

Phase	Amplitude
 Higher accuracy, proportional to wavelength 	 Lower accuracy, proportional to pixel size
 Phase unwrapping errors 	 No need for phase unwrapping
 Suitable for slow rate of deformation 	 Suitable for high rate of deformation
 More sensitive to tmeporal decorrelation 	 Less sensitive to temporal decorrelation

SqueeSAR[™]: applications

Sisteriaidinkys

SqueeSAR[™] applications

Subsidence

Landslides

Seismic faults

Single building

treuropa.com

SAR amplitude data applications

Chatigrutheteotion

SAR amplitude applications

Earthquake

Glacier motion

Change detection

Phase + Amplitude

Phase	Amplitude
 Higher accuracy, proportional	 Lower accuracy, proportional
to wavelength	to pixel size
 Phase unwrapping errors 	 No need for phase unwrapping
 Suitable for slow rate of	 Suitable for high rate of
deformation	deformation
 More sensitive to tmeporal	 Less sensitive to temporal
decorrelation	decorrelation

Monitoring challenging areas

- High resolution SAR satellites make possible to use speckle tracking to monitor deformation phenomena with centimetric accuracy
- In challenging areas both phase and amplitude data should be exploited to monitor both low and high rate deformation phenomena

SqueeSAR analysis

Time-lapse analysis to monitor low rate deformation areas

Speckle tracking analysis Time-lapse analysis to monitor high rate deformation areas 2D deformation field

Change detection maps to identify areas which change in reflectivity and can not be monitored through time

treuropa.com

First test case

SqueeSAR[™] analysis

Satellite	CSK
Geometry	Ascending
Track	227
N. of Images	59
Date Range	22 Jan 2013 - 26 Jun 2014

Speckle tracking analysis

Change detection analysis

• Amplitude data can also provide information about the areas which have been operated during two consecutive acquisitions

Analysis Overview

• A joint exploitation of all these techiniques helps to get a comprehensive analysis of the area of interest

Second case study

CSK - Ascending

TSX - Descending

Speckle tracking analysis

CSK - Ascending

Speckle tracking analysis

TSX - Descending

3D displacement field

• Combining the results of the SqueeSAR and speckle tracking analysis it is possible to retrieve the full 3D displacement field

Salt dome for brine production

- The monitoring started in August 2012, shortly after a sinkhole of about 150 meters wide
- 20 AR were installed in that specific area of interest

SqueeSAR analysis

• Infrastructures can be monitored by interferometry

AR analysis

• To monitor the Ars it is necessary to combine interferometry and speckle

traking

Range component – joint analysis

• To provide a comprehensive analysis of the range component also the speckle-tracking analysis has been performed

Azimuth component

• Analysis provided by the speckle-tracking solely

- High resolution images increases the range of applicability of SAR amplitude information
- Deformation time-lapse monitoring should always exploit both phase and amplitude information for a better characterization of the area under study.

Tele-Rilevamento Europa

Ripa di Porta Ticinese 79 20143 Milano Italia www.treuropa.com

TRE Canada Inc.

#410 - 475 West Georgia Street Vancouver, BC, V6B 4M9 Canada www.trecanada.com

